Data Article

Experimental data for an air-conditioning system identification

Hermes Ramírez a, *, Javier Jiménez-Cabas b, Antonio Bula a

a Department of Mechanical Engineering, Universidad del Norte, Barranquilla, Colombia
b Departamento de Ciencias de la Computación y Electrónica, Universidad de la Costa, Barranquilla, Colombia

A R T I C L E I N F O

Article history:
Received 12 April 2019
Received in revised form 12 July 2019
Accepted 17 July 2019
Available online 25 July 2019

Keywords:
Mini split
R410A
Design of experiment
Energy
Psychrometry
Refrigeration cycle

A B S T R A C T

In this article, data from a 3.5kW mini split air conditioning is presented. A screening 2^3 design experiment was performed to evaluate the effects of indoor air temperature, absolute humidity and evaporator fan speed in the performance of the air conditioning. This dataset also includes noise factors as outdoor air temperature, fans energy consumption and response as indoor air exit conditions.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

This paper presents the experimental data obtained from a 2^3 screening design experiment. The experiment was performed to evaluate the effects of the inlet temperature and inlet humidity of the indoor air, and evaporator fan speed on the performance of a mini split air-conditioner. The system consists of a 3.5kW cooling capacity mini split with inverter and a seasonal energy efficiency ratio of 17, in this system, 21 sensors were installed in order to measure refrigerant, air, and current data. Data describe the inlet and outlet conditions of indoor and outdoor air (temperature and relative humidity), refrigerant R410A (temperature, pressure, volumetric flow) and power consumption (current) of the

* Corresponding author.
E-mail address: hermesr@uninorte.edu.co (H. Ramírez).

https://doi.org/10.1016/j.dib.2019.104316
2352-3409 © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
equipment, Table 1 shows the description and location of each sensor. Each run was performed at steady state operation for 1 hour and 45 minutes. To assure steady state, measurements started 1 hour after the air conditioning startup or change in the air inlet conditions as recommended in ASHRAE/AHRI 210 [1] and ISO 5151 standards [2].

2. Experimental design, materials and methods

Fig. 1 shows the experimental test rig scheme; it is localized in the Universidad del Norte, Barranquilla Colombia. Barranquilla is a tropical climate city, whose mean annual outdoor air temperature is in the range from 24 °C to 30.1 °C; besides, the annual mean outdoor air relative humidity is in the range from 80 to 85%. To assure indoor air inlet conditions in the evaporator, an air hood was installed at evaporator air inlet; using an electrical heater, and/or a steam generator (depending on the situation) to maintain the inlet conditions at the accepted range during the time measurements. Table 1 shows the description of each sensor installed in the test rig.

Considering that this is not a standard test, the accuracy of each sensor is accepted as recommended by the US Department of Engineering [3], temperature of indoor air at the evaporator inlet was established in 23 °C and 28 °C with ±1 °C as an acceptable range, which represents the typical range of indoor air temperature in rooms and offices. In the other hand, the absolute humidity is not directly measured; hence, relative humidity is adapted to reach the required values. Nevertheless, the relative humidity also depends on the air temperature, so to reach the 2 absolute humidity accepted values, 4 values of relative humidity are required, in Table 2 the values are presented.

The evaporator fan has 3 velocity levels and 1 auto mode; during the experimental tests, the evaporator fan speed was recorded as categorical data. Actual air speed was not measured; however, this factor was considered as it might influence results (i.e. outlet air temperature at evaporator). Two
(2) Fan speed levels were chosen in this experiment (low-level speed and high-level speed). Based on Table 2 data, a fan level, indoor air temperature, and indoor air relative humidity level experimental design was performed; to assure homogeneity in the results, the running order for the test were randomized.

Dataset is stored in an Excel file, with 16 worksheets, one for each experimental test. The first column for each worksheet shows the time elapsed between the first and the given measured data; date is not included in the data because the acquisition unit doesn’t capture the date time. The data for

Table 1
Instrument location and reference.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Precision/Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Refrigerant temperature at compressor inlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T2</td>
<td>Surface temperature of the compressor</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T3</td>
<td>Refrigerant temperature at compressor outlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T4</td>
<td>Outdoor air temperature at condenser inlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T5</td>
<td>Outdoor air temperature at the condenser outlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T6</td>
<td>Refrigerant temperature at condenser</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T7</td>
<td>Refrigerant temperature at condenser outlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T8</td>
<td>Surface temperature of the Capillary tube</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T9</td>
<td>Indoor air temperature at the evaporator inlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>T10</td>
<td>Indoor air temperature at the evaporator outlet</td>
<td>±0.5 °C</td>
</tr>
<tr>
<td>P1</td>
<td>Refrigerant pressure at compressor inlet</td>
<td>±1 PSIg</td>
</tr>
<tr>
<td>P2</td>
<td>Refrigerant pressure at compressor outlet</td>
<td>±1 PSIg</td>
</tr>
<tr>
<td>P3</td>
<td>Refrigerant pressure at condenser outlet</td>
<td>±1 PSIg</td>
</tr>
<tr>
<td>P4</td>
<td>Refrigerant pressure at DX outlet</td>
<td>±1 PSIg</td>
</tr>
<tr>
<td>H1</td>
<td>Indoor air relative humidity at air hood</td>
<td>±0.5% error</td>
</tr>
<tr>
<td>H2</td>
<td>Indoor air relative humidity at the evaporator outlet</td>
<td>±0.5% error</td>
</tr>
<tr>
<td>H3</td>
<td>Indoor air relative humidity at the evaporator inlet</td>
<td>±0.5% error</td>
</tr>
<tr>
<td>I1</td>
<td>Compressor current consumption</td>
<td>1.5% error</td>
</tr>
<tr>
<td>I2</td>
<td>Condenser fan current consumption</td>
<td>1.5% error</td>
</tr>
<tr>
<td>I3</td>
<td>Evaporator fan current consumption</td>
<td>1.5% error</td>
</tr>
<tr>
<td>F1</td>
<td>Refrigerant liquid flowmeter at condenser outlet</td>
<td>±1.0% error Full Scale</td>
</tr>
</tbody>
</table>

![Fig. 1. Test rig experiment scheme.](image-url)
all the 21 measurements are presented resulting in 10700 store data, a mean of 6700 data per run. The absolute pressure data was calculated by the addition of the gauge pressure measurement from the experimental system and the atmospheric pressure (at sea level \(= \) 14.7 PSIa).

Calculated power consumption is the product of current data measure from the experimental system by voltage (120V). Finally, Table 3 shows the order of the running test and the indoor air inlet conditions for each test.

Acknowledgments

Authors would like to acknowledge Universidad Del Norte and his Ph.D. Scholarship Contract Identification Number: UN-OJ-2013-22062 and the Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS Scholarship Call No 727 of 2015 for the financial support.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104316.
References

