Show simple item record

dc.creatorSanchez De Sabau, Sandra Marcela
dc.creatorSabau, Marian
dc.creatorMontero Pulgarin, Linda Nayeth
dc.creatorGonzalez Coneo, Jorge Enrique
dc.creatorAbellan, Ana
dc.creatorOsorio Garcia, Camilo Arturo
dc.date.accessioned2018-11-27T15:47:04Z
dc.date.available2018-11-27T15:47:04Z
dc.date.issued2017
dc.identifier.issn2067533X
dc.identifier.urihttp://hdl.handle.net/11323/1948
dc.description.abstractThere have been many studies and research that address sustainable drainage urban systems (SUDS), where factors like costs or the zone where a SUDS is to be installed are determinant, so multicriteria studies are important in decision-making. The development of a multidisciplinary approach could in the future serve as a helping tool to support decision, whose purpose would be to guide users in their choice of the most appropriate solution for managing the collection of rainwater. Another key point is to make use of other strategies to accurately define the most appropriate SUDS for a particular location. Modelling for example, considers different factors to simulate real-time rainfall events and evaluate the performance of rainwater collection systems among other low impact development systems. Based on what has been stated above, some successful cases currently performed all over the world were studied, where it is evident that green roofs can retain between 70% and 100% when rainfall is not high and peak reduction on these may reach 83.3%. Concrete and porous asphalt mixtures differ in their behaviour, but even so, they can maintain over time an average permeability between 0.41 cm/s and 0.22 cm/s, and similar values in the reduction of the infiltration capacity of 79.43% and 82.04% respectively.es_CO
dc.language.isoengen_US
dc.publisherInternational Journal of Conservation Scienceen_US
dc.rightsAtribución – No comercial – Compartir igualen_US
dc.subjectGreen roofsen_US
dc.subjectLow impact developmenten_US
dc.subjectPermeable pavementsen_US
dc.subjectRainwateren_US
dc.subjectSUDSen_US
dc.subjectUrban drainageen_US
dc.titleA look to the sustainable draining systems: Criteria of sustainability and successful casesen_US
dc.typeArticleen_US
dcterms.references[1] S. Todeschini, S. Papiri, C. Ciaponi, Performance of stormwater detention tanks for urban drainage systems in northern Italy, Journal of Environmental Management, 101, 2012, pp. 33–45. doi:10.1016/j.jenvman.2012.02.003. [2] J. Marsalek, S. Kok, Stormwater management and abatement of combined sewer overflow pollution, Water Quality Research Journal of Canada, 32(1), 1997, pp. 1-5. [3] * * *, Directive 2000/60/EC, Water Framework Directive, Royal Society of Chemistry, Cambridge, 2010. doi:10.1039/9781849732291. [4] C. Copeland, Clean water act: A summary of the law, Oil and Chemical Spills: Federal Emergency Response Framework and Related Legal Authorities, 2014, p. 29–44. http://www.scopus.com/inward/record.url?eid=2-s2.0- 84948082798&partnerID=tZOtx3y1. [5] T.C. Walsh, C.A. Pomeroy, S.J. Burian, Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed, Journal of Hydrology, 508, 2014, pp. 240–253. doi:10.1016/j.jhydrol.2013.10.038. [6] J.B. Ellis, J.C. Deutsch, J.-M. Mouchel, L. Scholes, M.. Revitt, Multicriteria decision approaches to support sustainable drainage options for the treatment of highway and urban runoff, Science of the Total Environment, 334–335, 2004, pp. 251–260.[7] G. Vesuviano, F. Sonnenwald, V. Stovin, A two-stage storage routing model for green roof runoff detention, Water Science & Technology, 69(6), 2014, pp. 1191–1197. doi:10.2166/wst.2013.808. [8] E. Burszta-Adamiak, M. Mrowiec, Modelling of green roofs’ hydrologic performance using EPA’s SWMM, Water Science & Technology, 68(1), 2013, pp. 36–42. doi:10.2166/wst.2013.219. [9] J. Drake, A. Bradford, T. Van Seters, Stormwater quality of spring–summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement, Journal of Environmental Management, 139, 2014, pp. 69–79. doi:10.1016/j.jenvman.2013.11.056. [10] B.O. Brattebo, D.B. Booth, Long-term stormwater quantity and quality performance of permeable pavement systems, Water Research, 37(18), 2003, pp. 4369– 4376,.doi:10.1016/S0043-1354(03)00410-X. [11] R. Raja Segaran, M. Lewis, B. Ostendorf, Stormwater quality improvement potential of an urbanised catchment using water sensitive retrofits into public parks, Urban Forestry & Urban Greening, 13(2), 2014, pp. 315–324, doi:10.1016/j.ufug.2014.01.001. [12] K.E. Borne, Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds, Ecological Engineering, 69, 2014, pp. 76– 82, doi:10.1016/j.ecoleng.2014.03.062. [13] B. Faucette, Compost in the green infrastructure tool box, Biocycle, 53, 10, 2012, pp. 33– 36. [14] P.J. Coombes, J.R. Argue, G. Kuczera, Figtree Place: a case study in water sensitive urban development (WSUD), Urban Water, 1(4), 2000, pp. 335–343, doi:10.1016/S1462-0758(00)00027-3. [15] A. Bressy, M.-C. Gromaire, C. Lorgeoux, M. Saad, F. Leroy, G. Chebbo, Towards the determination of an optimal scale for stormwater quality management: Micropollutants in a small residential catchment, Water Research, 46(20), 2012, pp. 6799–6810, doi:10.1016/j.watres.2011.12.017. [16] M. Hood, J.C. Clausen, G.S. Warner, Low impact development works!, Journal of Soil and Water Conservation, 61(2), 2006, pp. 58a–61a, search.proquest.com/docview/220980261?accountid=43787. [17] P.J. Coombes, G. Kuczera, J.D. Kalma, Economic, Water quantity and quality results from a house with a rainwater tank in the inner city, Australian Journal of Water Resources, 7(2), 2003, pp. 111–120. [18] F. Montalto, C. Behr, K. Alfredo, M. Wolf, M. Arye, M. Walsh, Rapid assessment of the cost-effectiveness of low impact development for CSO control, Landscape and Urban Planning, 82(3), 2007, pp. 117–131, doi:10.1016/j.landurbplan.2007.02.004. [19] K.L. Gilroy, R.H. McCuen, Spatio-temporal effects of low impact development practices, Journal of Hydrology, 367, 3–4, 2009, pp. 228–236, doi:10.1016/j.jhydrol.2009.01.008. [20] * * *, Secretaria Distrital de Ambiente, Sistema Urbanos de Drenaje Sostenible, Bogotá D.C., 2011. [21] * * *, Consultoría en Sostenibilidad Urbana, http://sudsostenible.com/ [accessed May 25, 2014]. [22] G. Valls, S. Perales, Integración de las aguas pluviales en el paisaje urbano: Un valor social a fomentar, I Congreso Nacional de Urbanismo Y Ordenación Del Territorio, Bilbao, 2008, p. 1–22.[23] K. Kinik, Buildings for a Rainy Day, Sierra, 91(6), 2006, p. 82. [24] A.M. Coutts, N.J. Tapper, J. Beringer, M. Loughnan, M. Demuzere, Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context, Progress in Physical Geography, 37, 1, 2013, pp. 2–28, doi:10.1177/0309133312461032. [25] C.P. McGuckin, R.D. Brown, A landscape ecological model for wildlife enhancement of stormwater management practices in urban greenways, Landscape and Urban Planning, 33(1–3), 1995, pp. 227–246. doi:10.1016/0169-2046(94)02020-G. [26] J. Puertas Agudo, J. Suarez López, J. Anta Álvarez, Gestión de las aguas pluviales. Implicaciones en el diseño de los sistemas de saneamiento y drenaje urbano, Centro de Estudios y Experimentación de Obras Públicas, 2008. [27] D. Jato-Espino, J. Rodriguez-Hernandez, V.C. Andrés-Valeri, F. Ballester-Muñoz, A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements, Expert Systems with Applications, 41(15), 2014, pp. 6807–6817. doi:10.1016/j.eswa.2014.05.008. [28] S. Perales Momparler, Sistemas Urbanos de Drenaje Sostenible (SUDS), Agua Y Servicios de Abastecimiento Y Saneamiento, Zaragoza, España, 2008, p. 6–8. [29] M. van Roon, Water localisation and reclamation: Steps towards low impact urban design and development, Journal of Environmental Management, 83(4), 2007, pp. 437–447. doi:10.1016/j.jenvman.2006.04.008. [30] S. Perales momparler, I. Andrés Doménech, A. Fernández Escalante, Los Sistemas Urbanos de Drenaje Sostenible (SUDS) en la Hidrogeología Urbana, IX Simposio De Hidrogeologia: Asociacion Espanola De Hidrogeologos, IGME, 2008, p. 545–558. http://books.google.com/books?id=KU8PzpuB4lIC&pgis=1 (accessed April 30, 2014). [31] A.E. Barbosa, J.N. Fernandes, L.M. David, Key issues for sustainable urban stormwater management, Water Research, 46(20), 2012, pp. 6787–6798. doi:10.1016/j.watres.2012.05.029. [32] C. Martin, Y. Ruperd, M. Legret, Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices, European Journal of Operational Research, 181(1), 2007, pp. 338–349. doi:10.1016/j.ejor.2006.06.019. [33] M. Zawilski, G. Sakson, A. Brzezińska, Opportunities for sustainable management of rainwater: case study of Łódź, Poland, Ecohydrology and Hydrobiology, 14(3), 2014, pp. 220–228. doi:10.1016/j.ecohyd.2014.07.003. [34] D. Revitt, J. Ellis, L. Scholes, Criteria Relevant to the Assessment of BMP Performance, 2003. http://leesu.univ-paris-est.fr/daywater/REPORT/D52-final-draft- 2003-12-15.pdf. [35] B. Woods-Ballard, R. Kellagher, P. Martin, C. Jefferies, R. Bray, P. Shaffer, The SUDS manual, Ciria, London, 2007. http://www.persona.uk.com/A47postwick/deposit- docs/DD-181.pdf. [36] A.H. Roy, S.J. Wenger, T.D. Fletcher, C.J. Walsh, A.R. Ladson, W.D. Shuster, H.W. Thurston, R.R. Brown, Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States, Environmental Management, 42(2), 2008, pp. 344–359. doi:10.1007/s00267-008-9119- 1. [37] C.B.S. Dotto, M. Kleidorfer, A. Deletic, W. Rauch, D.T. McCarthy, T.D. Fletcher, Performance and sensitivity analysis of stormwater models using a Bayesian approachand long-term high resolution data, Environmental Modelling and Software, 26(10), 2011, pp. 1225–1239. doi:10.1016/j.envsoft.2011.03.013. [38] A. ELLIOTT, S. TROWSDALE, A review of models for low impact urban stormwater drainage, Environmental Modelling and Software, 22(3), 2007, pp. 394–405. doi:10.1016/j.envsoft.2005.12.005. [39] Q. Zhou, A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts, Water, 6(4), 2014, pp. 976–992. doi:10.3390/w6040976. [40] M. Díaz-Granados, J.P. Rodríguez, M.S. Rodríguez, J.C. Penagos, S. Achleitner, N. Mcintyre, C. Maksimovic, Towards a Paradigm Shift in Urban Drainage Management and Modelling in Developing Countries, Revista De Ingeniería, 30, 2010, pp. 133–150. [41] D.C. Black, P.J. Wallbrink, P.W. Jordan, Towards best practice implementation and application of models for analysis of water resources management scenarios, Environmental Modelling and Software, 52, 2014, pp. 136–148. doi:10.1016/j.envsoft.2013.10.023. [42] M.A. Imteaz, A. Ahsan, A. Rahman, F. Mekanik, Modelling stormwater treatment systems using MUSIC: Accuracy, Resources, Conservation and Recycling, 71, 2013, pp. 15–21. doi:10.1016/j.resconrec.2012.11.007. [43] S.E. Hurley, R.T.T. Forman, Stormwater ponds and biofilters for large urban sites: Modeled arrangements that achieve the phosphorus reduction target for Boston’s Charles River, USA, Ecological Engineering, 37(6), 2011, pp. 850–863. doi:10.1016/j.ecoleng.2011.01.008. [44] Y. Liu, L.M. Ahiablame, V.F. Bralts, B.A. Engel, Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff, Journal of Environmental Management, 147, 2015, pp. 12–23. doi:10.1016/j.jenvman.2014.09.005. [45] N.R. Bastien, A framework for implementing surface water treatment trains for large developments, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2673. [46] https://www.epa.gov/water-research/storm-water-management-model-swmm (accessed October 16, 2016). [47] D.R. Thevenot, DayWater: An Adaptive Decision Support System for Urban Stormwater Management, IWA Publishing, 2008. https://books.google.com.co/books?id=uPxesplzuEAC. [48] H. Rosatto, M. Meyer, D. Laureda, L. Cazorla, D. Barrera, P. Gamboa, G. Villalba, M. Bargiela, L. Pruzzo, L. Rodríguez Plaza, N. Mazzeo, C. Caso, C. Rocca, P. Hashimoto, D. Kohan, E. Quaintenne, Eficiencia en la retención del agua de lluvia de cubiertas vegetadas de tipo extensivo intensivo (Water retention efficiency of green roof systems in extensive and intensive type covers), Revista de la Faculdat de Ciencias Agrarias UNCuyo, 45(1), 2013, pp. 169–184. [49] A. Palla, I. Gnecco, L.G. Lanza, Hydrologic Restoration in the Urban Environment Using Green Roofs, Water, 2(2), 2010, pp. 140–154. doi:10.3390/w2020140. [50] F. Boogaard, T. Lucke, N. van de Giesen, F. van de Ven, Evaluating the Infiltration Performance of Eight Dutch Permeable Pavements Using a New Full-Scale Infiltration Testing Method, Water, 6(7), 2014, pp. 2070–2083. doi:10.3390/w6072070. [51] Interlocking Concrete Paving Institute, Permeable Interlocking Concrete Pavement 4th For Design Professionals, ICPI, 2016. [52] Portland Cement Association, Design and Control of Concrete Mixtures, 16th Edition,PCA, 2016. [53] American Association of State Highway and Transportation Officials, Mechanistic- Empirical Pavement Design Guide: A Manual of Practice, 2nd Edition, AASHTO, 2015. [54] B. Hernández Díaz, O. Martínez Llorente, Diseño de un Campo de Prueba Piloto de Pavimentos Permeables en la Ciudad de Cartagena, Universidad de Cartagena, 2014. [55] L. Sañudo-Fontaneda, V. Andrés-Valeri, J. Rodriguez-Hernandez, D. Castro-Fresno, Field Study of Infiltration Capacity Reduction of Porous Mixture Surfaces, Water, 6(3), 2014, pp. 661–669. doi:10.3390/w6030661. [56] J. Rodriguez, J. Rodriguez, E. Gómez-Ullate, D. Castro, Sistemas Urbanos de Drenaje Sostenible. SUDS, CICCP, 2005. [57] EPA, Preliminary Data Summary of Urban Storm Water Best Management Practices, EPA-821-R-99-012, 1999. ___________________________________es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record