Show simple item record

dc.creatorGómez, Julio R.
dc.creatorSousa Santos, Vladimir
dc.creatorS. Quintana, Mario
dc.creatorViego Felipe, Percy R.
dc.creatorHernández, Hernán
dc.creatorQuispe, Enrique Ciro
dc.date.accessioned2019-01-16T21:50:58Z
dc.date.available2019-01-16T21:50:58Z
dc.date.issued2019-11-01
dc.identifier.issn2088-8708
dc.identifier.urihttp://hdl.handle.net/11323/1987
dc.description.abstractIn this paper the feasibility of energy saving by implementing flow regulation at constant load in feedwater pumps in a sugar industry is studied. As regulation strategy, the use of a variable speed drive in the hydraulic system is proposed. For the project evaluation, the Net Present Value and Payback Period techniques are used. Among the variables considered are the price of energy, the equipment useful life, financial data and those related to environmental impact. As a result, it was found that if only a commercial approach is considered, the energy saving strategy is profitable but not attractive, because investment is recovered in a period close to the useful life of technology. However, if a government focus that encourages the implementation of these energies saving strategies is considered, the investment of the project recovers in a short time.spa
dc.language.isoengspa
dc.publisherInternational Journal of Electrical and Computer Engineering (IJECE)spa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectEnergy savingspa
dc.subjectFeedwater pumpsspa
dc.subjectFlow regulationspa
dc.subjectSugar cane industryspa
dc.subjectVariable speed drivesspa
dc.titleFlow regulation at constant head in feedwater pumps in a sugar industryspa
dc.typeArticlespa
dcterms.references[1] US Energy Information Administration, “DOE/EIA-0484 International Energy Outlook 2016 with Projections to 2040,” May 2016. [2] A. Dietmair and A. Verl, “Energy Consumption Assessment and Optimisation in the Design and use Phase of Machine Tools,” in Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, 2010, pp. 116-121. [3] S. P. Singh, “Technical Change and Productivity Growth in the Indian Sugar Industry,” Procedia Economics and Finance, vol. 39, pp. 131-139, 2016. [4] M. Morato, et al., “Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario,” International Journal of Electrical Power & Energy Systems, vol. 101, pp. 139-150, 2018. [5] J. Q. Albarelli, et al., “Product Diversification To Enhance Economic Viability of Second Generation Ethanol Production in Brazil: The Case of the Sugar and Ethanol Joint Production,” Chemical Engineering Research and Design, vol. 92, no. 8, pp. 1470-1481, 2014. [6] M. K. Chauhan, et al., “Life Cycle Assessment of Sugar Industry: A Review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3445-3453, 2011. [7] S. Sathitbun-anan, et al., “Energy Efficiency and Greenhouse Gas Emission Reduction Potentials in Sugar Production Processes in Thailand,” Energy for Sustainable Development, vol. 23, pp. 266-274, 2014. [8] E.C., Quispe, et al., “Unbalanced Voltages Impacts on the Energy Performance of Induction Motors,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1412-1422, 2018. [9] V. Sousa, et al., “Estimating Induction Motor Efficiency under no-controlled Conditions in the Presences of Unbalanced and Harmonics Voltages,” in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, 2015, pp. 567-5. [10] V. Sousa, et al., “Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2309-2315, 2016. [11] M. Koor, et al., “Optimization of Pump Efficiencies with different Pumps Characteristics Working in Parallel Mode,” Advances in Engineering Software, vol. 101, pp. 69-76, 2016. [12] V. Sousa, et al., “Harmonic Distortion Evaluation Generated by PWM Motor Drives in Electrical Industrial Systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017. [13] V. Sousa, et al., “Analysis of Harmonic Distortion Generated by PWM Motor Drives,” in 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, 2017, pp. 1-6. [14] P. Olszewski, “Genetic Optimization and Experimental Verification of Complex Parallel Pumping Station with Centrifugal Pumps,” Applied Energy, vol. 178, pp. 527-539, 2016. [15] M. D. Z. Izquierdo and J. J. S. Jiménez, “Operación óptima de bombas en paralelo empleando variadores de velocidad,” Ingenierías, vol. 13, no. 46, p. 57, 2010. [16] Z. Ma and S. Wang, “An Optimal Control Strategy for Complex Building Central Chilled Water Systems for Practical and Real-time Applications,” Building and Environment, vol. 44, pp. 1188-1198, 2009. [17] S. Wang, “Intelligent Buildings and Building Automation,” Spon Press, London, 2010, pp. 203. [18] M. I. Jahmeerbacus, “Flow Rate Regulation of a Variable Speed Driven Pumping System using Fuzzy Logic,” in 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 2015. [19] C. A. Solano, et al., “Sistema de control de presión para el suministro de agua en la central de servicios del centro médico nacional la raza,” México, 2012. [20] J. A. Saavedra, “Control de presión mediante variador de frecuencia y motobomba,” Chile, 2007. [21] R. A. Castillo, “Automatización del sistema de bombas de agua fría de fábrica de tejidos imperial S. A.,” 2009. [22] J. J. García, et al., “Modelado y simulación de una bomba centrífuga con motor monofásico en Simulink,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 22, pp. 78-84, 2013. [23] P. Gómez, et al., “Procedimiento para la selección de la estrategia de regulación más adecuada en estaciones de bombeo,” in IV Jornadas de Ingeniería del Agua, JIA 2015, Córdoba, España, 2015, pp. 1191-1202. [24] H. Díaz, et al., “Diseño de un sistema de control para obtener presión constante de agua,” in XXII Congreso Internacional de Ingeniería Eléctrica, Electrónica, Computación y Afines, Huancayo, Perú, 2015. [25] F. E. Hoyos, et al., "Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1551-1568, 2018. [26] J. R. Gómez, et al., “Experiencia de aplicación de accionamiento de velocidad variable. opción de alto comportamiento para la gestión energética,” in 48 Congreso de la ATAC, La Habana, 2002. [27] Y. Delgado, “Estudio de factibilidad técnico-económica de regulación de la capacidad con variadores de frecuencia de las bombas de agua de alimentar de la CTE „Carlosma Manuel de Céspedes‟. Cienfuegos. Cuba,” 2014. [28] V. A. Shankar, et al., “Real Time Simulation of Variable Speed Parallel Pumping System,” Energy Procedia, vol. 142, pp. 2102-2108, 2017. [29] J. Viholainen, “Energy-efficient Control Strategies for Variable Speed Driven Parallel Pumping Systems based on Pump Operation Point Monitoring with Frequency Converters,” Act Universitatis Lappeenrantaensis, 2014. [30] F. J. Ferreira, et al., “Ecoanalysis of Variable-speed Drives for Flow Regulation in Pumping Systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2117-2125, 2011. [31] J. A. Madrigal, et al., “Planificación energética para el ahorro de fueloil en una lavandería industrial,” Ingeniare. Revista chilena de ingeniería, vol. 26, no. 1, pp. 86-96, 2018. [32] A. Sagastume, et al., “Electricity Management in the Production of Lead-acid Batteries: The Industrial Case of a Production plant in Colombia,” Journal of Cleaner Production, vol. 198, no. 10, pp. 1443-1458, 2018. [33] J. R. Gómez, et al., “A New Energy Performance Indicator for Energy Management System of a wheat mill plant,” International Journal of Energy Economics and Policy, vol. 8, no.4, pp. 324-330, 2018. [34] I. J. Karassik and R. Carter, “Bombas centrífugas. Selección, operación y mantenimiento,” Companhia Editorial Continental, 1966. [35] Crane Co., “Flujo de fluidos en válvulas, accesorios y tuberías,” McGRAW-HILL, 1977. [36] E. Hugot, “Handbook of Cane Sugar Engineering,” New York: Elsevier, 1986. [37] I. Salazar, et al., “Estimado de la reducción de la emisión de CO2 por accione de ahorro de electricidad en las condiciones de Cuba,” Ingeniería Energética, vol. 31, no. 3, pp. 1-5, 2010. [38] Banco Central de Cuba, Circular 5/2011 y Circular 2/2012, La Habana, Cuba. [39] Gaceta Oficial de la República de Cuba, Ley 113, artículo 97, La Habana, Cuba, 2012.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record