Show simple item record

dc.creatorLópez Herrera, Johan Esteban
dc.creatorHernández Montes, Vanessa
dc.creatorBetancur Henao, Claudia Patricia
dc.creatorSanta Marín, Juan Felipe
dc.creatorBuitrago Sierra, Robison
dc.identifier.citationLópez Herrera, J., Hernández Montes, V., Betancur Henao, C., Santa Marín, J., & Buitrago Sierra, R. (2018). Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión. INGE CUC, 14(2), 45-54.
dc.description.abstractIntroduction− Magnesium alloys have been known for its bio-compatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys.Objective−In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evalu-ate its corrosion resistance.Methodology−The particles were analyzed by Scanning Elec-tron Microscopy (SEM) and visual inspection. Additionally, hy-drogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys.Results− The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corro-sion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thin-ner than 20 nm. Conclusions−TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropyl-ene discs entirely.es_ES
dc.description.abstractIntroducción− Las aleaciones de magnesio son conocidas por sus ca-racterísticas biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio.Objetivo− En este trabajo, la técnica de recubrimiento por inmersión se usó para recubrir una aleación de magnesio con partículas de TiO2 y evaluar su comportamiento a corrosión.Metodología− Las partículas se analizaron por microscopía electrónica de barrido (SEM) e inspección visual. Además, se realizaron pruebas de evolución de hidrógeno para comprender el efecto de la adición de TiO2en la velocidad de corrosión de la aleación de Mg.Resultados− Los resultados mostraron el efecto positivo de TiO2 en la mejora de la corrosión de aleaciones de ASTM B107 AZ31B Mg mediante una medición indirecta a través de pruebas de evolución de hidrógeno. La aleación ASTM B107 AZ31B sin recubrimiento muestra una corro-sión 29 veces más rápida en comparación con la aleación recubierta. El espesor obtenido mediante el método de recubrimiento por inmersión es inferior a 20 nm. Conclusiones− Las partículas de TiO2 se agregaron en la superficie de la aleación ASTM B107 AZ31B con una velocidad controlada. Las imáge-nes SEM mostraron la mejora del recubrimiento cuando aumenta la con-centración de H2O en el sol. Otro parámetro importante es la velocidad de extracción durante el proceso de recubrimiento por inmersión, que resultó ser mejor a una velocidad de 3 mm/min. La evolución del hidró-geno en la solución mostró que la aleación ASTM B107 AZ31B recubierta reportó menos producción de hidrógeno durante la prueba de corrosión. La técnica de recubrimiento por inmersión puede realizarse en polipro-pileno y, finalmente, obtener una superficie completamente recubierta.es_ES
dc.publisherInge CUCes_ES
dc.subjectRecubrimientos por inmersiónes_ES
dc.subjectPartículas de TiO2es_ES
dc.subjectAleaciones de Mges_ES
dc.subjectEvolución del hidrógenoes_ES
dc.titleModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersiónes_ES
dcterms.referencesS. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012. P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016. M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013. V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016. X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016. N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. G. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366.

Files in this item


This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record