Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Herrera, Johan Estebanspa
dc.contributor.authorHernández Montes, Vanessaspa
dc.contributor.authorBetancur Henao, Claudia Patriciaspa
dc.contributor.authorSanta Marín, Juan Felipespa
dc.contributor.authorBuitrago Sierra, Robisonspa
dc.date.accessioned2019-02-11T21:45:12Z
dc.date.available2019-02-11T21:45:12Z
dc.date.issued2018-12-03
dc.identifier.citationJ. López H., V. Hernández-Montes, C. Betancur-Henao, J. F. Santa-Marín, R. Buitrago-Sierra “Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method,” INGE CUC, vol. 14, no. 2, pp. 45-54, 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.04spa
dc.identifier.urihttp://hdl.handle.net/11323/2385spa
dc.description.abstractIntroduction− Magnesium alloys have been known for its bio-compatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys.Objective−In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evalu-ate its corrosion resistance.Methodology−The particles were analyzed by Scanning Elec-tron Microscopy (SEM) and visual inspection. Additionally, hy-drogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys.Results− The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corro-sion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thin-ner than 20 nm. Conclusions−TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropyl-ene discs entirely.eng
dc.description.abstractIntroducción− Las aleaciones de magnesio son conocidas por sus ca-racterísticas biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio.Objetivo− En este trabajo, la técnica de recubrimiento por inmersión se usó para recubrir una aleación de magnesio con partículas de TiO2 y evaluar su comportamiento a corrosión.Metodología− Las partículas se analizaron por microscopía electrónica de barrido (SEM) e inspección visual. Además, se realizaron pruebas de evolución de hidrógeno para comprender el efecto de la adición de TiO2en la velocidad de corrosión de la aleación de Mg.Resultados− Los resultados mostraron el efecto positivo de TiO2 en la mejora de la corrosión de aleaciones de ASTM B107 AZ31B Mg mediante una medición indirecta a través de pruebas de evolución de hidrógeno. La aleación ASTM B107 AZ31B sin recubrimiento muestra una corro-sión 29 veces más rápida en comparación con la aleación recubierta. El espesor obtenido mediante el método de recubrimiento por inmersión es inferior a 20 nm. Conclusiones− Las partículas de TiO2 se agregaron en la superficie de la aleación ASTM B107 AZ31B con una velocidad controlada. Las imáge-nes SEM mostraron la mejora del recubrimiento cuando aumenta la con-centración de H2O en el sol. Otro parámetro importante es la velocidad de extracción durante el proceso de recubrimiento por inmersión, que resultó ser mejor a una velocidad de 3 mm/min. La evolución del hidró-geno en la solución mostró que la aleación ASTM B107 AZ31B recubierta reportó menos producción de hidrógeno durante la prueba de corrosión. La técnica de recubrimiento por inmersión puede realizarse en polipro-pileno y, finalmente, obtener una superficie completamente recubierta.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 14, Núm. 2 (2018)spa
dc.sourceINGE CUCspa
dc.titleModification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating methodspa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/ingecuc.14.2.2018.04spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1756spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/ingecuc.14.2.2018.04spa
dc.identifier.eissn2382-4700spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn0122-6517spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.referencesS. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020spa
dc.relation.referencesJ. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106spa
dc.relation.referencesY. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058spa
dc.relation.referencesM. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130spa
dc.relation.referencesR. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168spa
dc.relation.referencesS. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022spa
dc.relation.referencesR. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003spa
dc.relation.referencesM. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011spa
dc.relation.referencesI. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113spa
dc.relation.referencesX. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018spa
dc.relation.referencesR.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011spa
dc.relation.referencesM. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002spa
dc.relation.referencesA. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361spa
dc.relation.referencesM. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109spa
dc.relation.referencesA. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069spa
dc.relation.referencesM. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004spa
dc.relation.referencesS. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332spa
dc.relation.referencesY. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917spa
dc.relation.referencesK. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.spa
dc.relation.referencesP. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.spa
dc.relation.referencesM. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdfspa
dc.relation.referencesS. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7spa
dc.relation.referencesT. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.spa
dc.relation.referencesV. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.spa
dc.relation.referencesX. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056spa
dc.relation.referencesY. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.spa
dc.relation.referencesN. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4spa
dc.relation.referencesG. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017spa
dc.relation.referencesN. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014spa
dc.relation.referencesH.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237spa
dc.relation.referencesE. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830spa
dc.relation.referencesO. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0spa
dc.relation.referencesC. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-Tspa
dc.relation.referencesG. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001spa
dc.relation.referencesS. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803spa
dc.relation.referencesM. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/9780857093677spa
dc.subject.proposalDip-coatingeng
dc.subject.proposalCorrosioneng
dc.subject.proposalTiO2 particleseng
dc.subject.proposalMg alloyseng
dc.subject.proposalHydrogen evolutioneng
dc.subject.proposalRecubrimientos por inmersiónspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalPartículas de TiO2spa
dc.subject.proposalAleaciones de Mgspa
dc.subject.proposalEvolución del hidrógenospa
dc.title.translatedModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersiónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage54
dc.relation.citationstartpage45spa
dc.relation.citationissue2spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevINGE CUCspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem