Mostrar el registro sencillo del ítem

dc.contributor.author Moreno Gamboa, Faustino
dc.contributor.author Nieto Londoño, Cesar
dc.date.accessioned 2019-02-11T23:17:49Z
dc.date.available 2019-02-11T23:17:49Z
dc.date.issued 2018-12-18
dc.identifier.citation Moreno Gamboa, F., & Nieto Londoño, C. (2018). Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia. INGE CUC, 14(2), 126-136. https://doi.org/10.17981/ingecuc.14.2.2018.12 es_ES
dc.identifier.issn 0122-6517
dc.identifier.issn 2382-4700
dc.identifier.uri http://hdl.handle.net/11323/2393
dc.identifier.uri https://revistascientificas.cuc.edu.co/ingecuc/article/view/1849 es_ES
dc.description.abstract Introducción: Actualmente en Colombia, existe gran interés por la aplicación de energías renovables y la diversificación de la matriz energética. Por lo tanto, en el presente trabajo se muestran los resultados de la simulación de una planta solar térmica hibrida de ciclo Brayton cerrado en Colombia, que recibe calor de un sistema de concentración de torre central y heliostatos. El recurso solar se estima por un modelo horario, adicionalmente cuenta con una cámara de combustión que utiliza gas natural como combustible, la cual garantiza la estabilidad del calor suministrado a la planta. La ubicación de la planta se selecciona en función de la radiación global y difusa media diaria mensual, y adicionalmente, se realiza una simulación de los principales parámetros de operación, optimizando la potencia y el rendimiento global en función de la relación de presión. Por último, se realiza un análisis exergético de la planta, especialmente de los componentes afectados por la variación de la radiación en el día. Objetivo: Evaluar una planta solar térmica de concentración de ciclo Brayton cerrado, desde el punto de vista energético y exegético bajo las condiciones ambientales de Colombia. Metodología: Integrar en lenguaje modélica, por medio de un compilador Dymola un modelo de recurso solar, un modelo energético y un modelo exergético aplicado a las condiciones ambientales de Colombia. Resultados: Se presenta el análisis correspondiente a la evolución de los principales parámetros de operación de la planta a lo largo del día, la variación del rendimiento y la potencia en función de la relación de presiones. Conclusiones: Es viable técnicamente la operación de una planta solar térmica de concentración de ciclo Brayton en algunos lugares de Colombia, dado el recurso solar disponible y el ahorro de combustible que genera a pesar del detrimento del rendimiento energético y exergético. es_ES
dc.description.abstract Introduction− Actually in Colombia, there is great inter-est in the application of renewable energy and the diversi-fication of the energy matrix. Therefore, in this work, are presented the results of the simulation of a hybrid solar thermal plant of closed Brayton cycle in Colombia, that re-ceives heat from a concentration system of central tower and heliostats. The solar resource is estimated by a time model validated initially, additionally with a combustion chamber that uses natural gas as fuel, which guarantees the stability of the heat supplied to the plant. The location of the plant is selected based on the global and diffuse average monthly radiation per day, and additionally, a simulation of the main operating parameters is carried out, optimizing the power and overall performance as a function of the pressure ratio. Finally, an exergy analysis of the plant is developed, especially of the components affected by the variation of the radiation during the day.Objective−Evaluate a thermal solar plant of closed Brayton cycle concentration, through an energetic and exegetical analysis under the environmental conditions of Colombia.Methodology−Integrate a model of solar resource, an energetic model and an exergy model applied to the envi-ronmental conditions of Colombia in model language in a Dymola compiler.Results− The evolution of the main operating parameters of the plant throughout the day, the variation of the perfor-mance and the power depending on the pressure ratio are presented and analyzed.Conclusions−It is technically feasible the operation of a solar thermal plant of concentration of Brayton cycle in some places of Colombia, given the available solar resource and the fuel saving that it generates despite the detriment of the energetic and exegetical performance. es_ES
dc.language.iso es es_ES
dc.publisher Inge CUC es_ES
dc.relation.ispartofseries 2;
dc.subject Energía Solar Térmica es_ES
dc.subject Concentración Solar es_ES
dc.subject Ciclo Brayton Cerrado es_ES
dc.subject Radiación solar es_ES
dc.subject Destrucción de exergía es_ES
dc.title Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia es_ES
dc.type Article es_ES
dcterms.references S. Kalogirou, Solar Engineering Processes and Systems, San Diego: Academic Press Elsevier, 2009. REN21, Steering Committee, Renewable Energy Policy Network for the 21st Century, Renewable 2016 energy Status Report, Paris, 2016. Y . Goswami, Principles of Solar Engineering, Boca Raton, USA: CRC Press, 2015. B. Liu y R. Jordan, “The Interrelationship and Characteristic Distribution of Direct, Diffuse ant Total Solar Radiation”, Solar Energy, vol. 4, pp. 1-12, 1960. https://doi.org/10.1016/0038-092X(60)90062-1 M. Collares-Pereira y A. Rabl, “Hourly Diffuse Fraction Correlation at a Tropical Location”, Solar Energy, vol. 53, pp. 505-510, 1994. https://doi.org/10.1016/0038-092X(94)90130-T C. Gueymard, “Prediction and Performance Assessment of Mean Hourly Global Radiation”, Solar Energy, vol. 68, pp. 285-303, 2000. https://doi.org/10.1016/S0038-092X(99)00070-5 W. Le Roux, T. Bello-Ochende y J. Meyer, “A review on the Thermodynamic Optimization and Modelling of the Solar Thermal Brayton Cycle”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 677-690, 2013. https://doi.org/10.1016/j.rser.2013.08.053 CSP Today, Concentrated Solar Power Market Report 2014, Business Intelligence Ltd, London, 2015. C. Ho y B. Iverson, “A Review of High-Temperature Central Receiver Design for Concentrating Solar Power”, Renewable and Sustainable Energy Reviews, vol. 29, pp. 835-846, 2014. https://doi.org/10.1016/j.rser.2013.08.099 A. Avila-Martin, J. Fernandez-Reche y F. Tellez, “Evaluation of the Potential of Central Receiver Solar Power Plants”, Applied Energy, vol. 112, pp. 274-288, 2013. https://doi.org/10.1016/j.apenergy.2013.05.049 F. Collado y J. Guallar, “A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code”, Renewable and Sustainable Energy Reviews, vol. 20, pp. 142-145, 2015. https://doi.org/10.1016/j.rser.2012.11.076 Y . Zhang, B. Lin y J. Chen, “Optimum Performance Characteristics of an Irreversible Solar-Driven Brayton Heat Engine at the Maximum Overall Efficiency”, Renewable Energy, vol. 32, pp. 856-867, 2007. https://doi.org/10.1016/j.renene.2006.02.008 R. Kehlhofer, F. Hannemann y F. Stirnimann, Combined Cycle Gas and Steam Turbine Power Plants, Tusla. Oklahoma, USA: PennWall Corporation, 2009. L. Wu, G. Lin y J. Chen, “Parametric Optimization of a Solar-driven Braysson Heat Engine with Variable Heat Capacity of the Working Fluid and Radiation Convective Losses,” Renewable Energy, vol. 35, pp. 95-100, 2010. https://doi.org/10.1016/j.renene.2009.07.015 S. Sánchez, Modelización, Análisis y Optimización “Termodinámica de Plantas de Potencia Multietapas Tipo Brayton. Aplicación a Centrales Termosolares”, Tesis Doctoral, Universidad de Salamanca, Salamanca, 2012. S. Sanchez, A. Medina y A. Calvo Hernandez, “Thermodynamic Model and Optimization of a Multi-Step Irreversible Brayton Cycle”, Energy Conversion and Management, vol. 51, pp. 2134-2143, 2010. https://doi.org/10.1016/j.enconman.2010.03.006 D. Olivenza-Leon, A. Medina y A. Calvo Hernández, “Thermodynamic Modelling of a Hybrid Solar Gas Turbine”, Energy Conversion and Management, vol. 93, pp. 435-447, 2015. https://doi.org/10.1016/j.enconman.2015.01.027 M. J. Santos, R. Mechan, A. Medina y A. Calvo Hernandez, “Seasonal Thermodynamic Prediction of the Performance of Hybrid Solar Gas-Turbine”, Energy Conversion and Management, vol. 115, pp. 80-102, 2016. https://doi.org/10.1016/j.enconman.2016.02.019 W. LeRoux, T. Bello-Ochende y J. Meyer, “The Efficiency of an Open-Cavity Tubular Solar Receiver for a Small-Scale Solar Thermal Brayton Cycle”, Energy Conversion and Management, vol. 84, pp. 457-470, 2014. https://doi.org/10.1016/j.enconman.2014.04.048 C. Xu, Z. Wang y F. Sun, “Energy and Exergy Analysis of Solar Power Plants”, Applied Thermal Engineering, vol. 31, pp. 3904 - 3913, 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.038 V. Zare y M. Hasanzadeh, “Energy and Exergy Analysis of Closed Brayton Cycle Combined for Solar Tower Plant”, Energy Conversion and Management, vol. 128, pp. 227 - 237, 2016. https://doi.org/10.1016/j.enconman.2016.09.080 R. Vasquez Padilla, R. Benito y W. Stein, “An Exergy Analysis of Recompression Supercritical CO2 Cycles with Reheating”, Energy Procedia, vol. 69, pp. 1181 - 1191, 2015. https://doi.org/10.1016/j.egypro.2015.03.201 W. Xiaohe, L. Quibin y B. Zhang, “Thermodynamic Analysis of the Cascade Supercritical CO2 Cycle Integrated with Solar and Biomass”, Energy Procedia, vol. 105, pp. 445 - 452, 2017. https://doi.org/10.1016/j.egypro.2017.03.339 National Aeronautics and Space Administration, “NASA,” [En línea]. Available: https://eosweb.larc.nasa.gov/sse/. [Último acceso: 26 11 2017]. J. Cenguel y M. Boles, Termodinámica, Ciudad de México: McGraw Hill, 2011. K. Wark y D. Richards, Termodinámica, Madrid: Mc-Graw Hill, 2001. J. Duffie y W. Beckman, Solar Engineering of Thermal Process, New Jersey: John Wiley and Sons, 2006. N. Jubeh, “Exergy Analysis and Second Law Efficiency of Regenerative Brayton Cycle Isothermal Heat Addition”, Entropy, vol. 3, pp. 172 -187, 2005. https://doi.org/10.3390/e7030172 J. Parrott, “Theoretical Upper Limit to the Conversion Efficiency of Solar Energy”, Solar Energy, vol. 21, pp. 227 - 239, 1978. https://doi.org/10.1016/0038-092X(78)90025-7 Y. Wanxiang, L. Zhengrong y X. Tongbin, “New Descomposition Models to Estimate Hourly Global Solar Radiation from the Daily Value”, Solar Energy, vol. 120, pp. 87 - 99, 2015. https://doi.org/10.1016/j.solener.2015.05.038 R. Mejdoul y M. Taqi, “The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco”, International Journal of Renewable Energy, vol. 2, nº 4, 2012. W. Wan Nik, M. Ibrahim y K. Samo, “Monthly Mean Hourly Global Solar Radiation Estimation”, Solar Energy, vol. 86, pp. 379 - 387, 2012. https://doi.org/10.1016/j.solener.2011.10.008 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta

Todos los contenidos de este Repositorio se encuentran bajo derechos de autor de La Universidad de La Costa salvo que expresamente se indique lo contrario.

Compartir en

Universidad de la Costa, CUC

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Universidad de la Costa CUC.
Politica de Protección de Datos.