Mostrar el registro sencillo del ítem

dc.contributor.authorMeza Castro, Ismael Fernandospa
dc.contributor.authorHerrera Acuña, Andrea Estherspa
dc.contributor.authorObregón Quiñones, Luis Guillermospa
dc.date.accessioned2019-02-13T19:21:06Z
dc.date.available2019-02-13T19:21:06Z
dc.date.issued2017-06-01
dc.identifier.citationI.F. Meza Castro, A.E. Herrera Acuña y L. G. Obregón Quiñones, “Determinación Experimental de Nuevas Correlaciones Estadísticas para el Cálculo del Coeficiente de Transferencia de Calor por Convección para Placa Plana, Cilindros y Bancos de Tubos,” INGE CUC, vol. 13, no. 2, pp. 9-17, 2017 DOI: http://dx.doi.org/10.17981/ingecuc.13.2.2017.01spa
dc.identifier.urihttp://hdl.handle.net/11323/2448spa
dc.description.abstractIntroducción: En este proyecto se llevó a cabo una investigación experimental con el diseño, montaje y puesta en marcha de un banco de pruebas de transferencia de calor por convección.Objetivo: Determinar nuevas correlaciones estadísticas que permitan conocer los coeficientes de transferencia de calor por convección del aire, con mayor exactitud, en aplicaciones con diferentes configuraciones geometrías calefactoras.Metodología: Se estudiaron tres configuraciones geométricas, como lo son placa plana, cilindros y bancos de tubos en función de sus propiedades físicas a través de los números de Reynolds y Prandtl utilizando una interfaz de transmisión de datos mediante controladores Arduino® con los que se midió la temperatura del aire a través del ducto para obtener datos en tiempo real y relacionar el calor cedido del elemento calefactor al fluido y poder realizar el modelamiento matemático en un software estadístico especializado. El estudio se hizo para las tres geometrías mencionadas, una potencia por elemento calefactor y dos velocidades de salida de aire con 10 repeticiones.Resultados: Se obtuvieron tres correlaciones matemáticas con coeficientes de regresión mayores a 0.972, una para cada elemento calefactor, obteniéndose errores de predicción en los coeficientes convectivos de transferencia de calor de 7,50% para la placa plana, 2,85% para la placa cilíndrica y 1,57% para el banco de tubos.Conclusiones: Se observó que en geometrías constituidas por varios elementos individuales se logra un ajuste estadístico mucho más exacto para predecir el comportamiento de los coeficientes de calor por convección debido a que cada unidad alcanza una estabilidad en el perfil de temperatura de la superficie con mayor rapidez, otorgándole a la geometría en general una medición más precisa en los parámetros que rigen la transferencia de calor, como es en el caso de la geometría del banco de tubos.spa
dc.description.abstractIntroduction− This project carried out an experimental research with the design, assembly and commissioning of a convection heat transfer test bench.Objective−To determine new statistical correlations that allow to know the heat transfer coefficients by air convection with greater accuracy in ap-plications with different heating geometry configurations.Methodology−Three geometric configurations, such as flat plate, cylin-ders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission inter-face using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in spe-cialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions.Results− Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank.Conclusions−It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was ob-tained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement in the parameters that govern the transfer of heat, as it is in the case of the ge-ometry of the tube bankeng
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 13, Núm. 2 (2017)spa
dc.sourceINGE CUCspa
dc.titleDeterminación experimental de nuevas correlaciones estadísticas para el cálculo del coeficiente de transferencia de calor por convección para placa plana, cilindros y bancos de tubosspa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/ingecuc.13.2.2017.01spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1499spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/ingecuc.13.2.2017.01spa
dc.identifier.eissn2382-4700spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn0122-6517spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.references[1] L.G. Obregón, J.C. Pertuz y R.A. Domínguez. (2017). Análisis del desempeño de una torre de enfriamiento a escala de laboratorio para diversos materiales de empaque, temperatura de entrada de agua y relación másica de flujo agua-aire. Prospectiva. [Online]. 15(a), 42-52. Disponible: http://dx.doi.org/10.15665/rp.v15i1.820spa
dc.relation.references[2] E. Gutiérrez y S.L. Tolentino. (2005, Sep.). Determinación del coeficiente de convección crítico para la modificación de un sistema de enfriamiento de ánodo. Universidad, Ciencia y Tecnología. [Online]. 9(35), 147-150. Disponible: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1316-48212005000300005&lng=es&nrm=isospa
dc.relation.references[3] A. Naghash, S. Sattari y A. Rashidi. (2016, Sep.). Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene. International comunications in heat and mass transfer. [Online]. 78, 127-134. Available: http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.09.004spa
dc.relation.references[4] S. Mendoza, J.C. Romero y E. Niebles. (2011, Sep.). Análisis de falla en evaporadores de placas de aluminio de sistemas de acondicionamiento de aire automotriz. INGE CUC. [Online]. 7(1), 59-74. Disponible:http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/277spa
dc.relation.references[5] Y.A. Cengel y A.J. Ghajar, Heat and mass transfer: fundamentals and applications. New York, USA: Mcgraw Hill, 2015, pp. 25-402.spa
dc.relation.references[6] E. Tamayo, Y. Retirado y E. Góngora. (2014). Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas. La Habana. [Online]. 17(1), 68-77. http://dx.doi.org/10.1051/epjconf/20122501036spa
dc.relation.references[7] M.G. Rasul, Heat transfer calculation: industrial heat transfer calculation. New York, USA: Mcgraw Hill, 2006, pp. 17.spa
dc.relation.references[8] F.P. Incropera y D.P. DeWitt, Fundamentos de Transferencia de Calor. Ciudad de México, México: Prentice Hall Hispanoamérica, 1999, pp. 17-20.spa
dc.relation.references[9] F. Gonzales, “Determinación experimental de coeficiente de convección y factor de fricción de un intercambiador de placas,” Trabajo de Grado, Dep. Ing. Termi., Univ. Carlos III, Madrid, España, 2008.spa
dc.relation.references[10] L. Uribe y C.A. Gómez, “Diseño y construcción de un banco de pruebas para determinar expresiones de coeficiente de transferencia de calor por convección promedio.,” Proyecto de Grado, Dep. Ing. Y Admón., Univ. Pont. Boliv., Bucaramanga, Colombia, 2008.spa
dc.relation.references[11] A. Albis, I. Caicedo y P. Peña. (2009, Nov.). Determinación del Coeficiente de Transferencia de Calor a Través de una Aplicación de Computadoras. La Serena. [Online]. 21(5), 13-20. http://dx.doi.org/10.4067/S0718-07642010000500003spa
dc.relation.references[12] J. Gonzales, “Determinación experimental de coeficientes de transferencia de calor para convección libre y forzada,” Tesis de Maestría, Dep. Ing. Mecá. Y Electr., Univ. Autono. N. León., San Nicolás de Garza, N.L. México, 1998.spa
dc.relation.references[13] Ingeniería, Soluciones y Tecnología. (2017). RTD P100. [Online]. Disponible: http://www.teii.com.mx/RTDPT100.htmlspa
dc.relation.references[14] Pixsys Electronics. (2016). Convertidor RTD y Termopares para cabezal DIN – Rfid (NFC). [Online]. Disponible:http://evirtual.lasalle.edu.co/info_basica/nuevos/guia/GuiaClaseNo.3.pdfspa
dc.relation.references[15] Automatizanos Editorial. (2016). Medición de temperatura con RTD PT100, transmisor 4-20 mA y Arduino.[Online].Disponible:http://www.automatizanos.com/articles/2016/02/09/medicion-de-temperatura-con-rtd-pt100-transmisor-4-20-ma-y-arduinospa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationissue2spa
dc.relation.citationvolume13spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevINGE CUCspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem