Mostrar el registro sencillo del ítem

dc.contributor.authorL.S. Oliveira, Marcosspa
dc.contributor.authorIzquierdo, Mariaspa
dc.contributor.authorQuerol, Xavierspa
dc.contributor.authorLieberman, Roy N.spa
dc.contributor.authorK. Saikia, Binoyspa
dc.contributor.authorF.O. Silva, Luisspa
dc.date.accessioned2019-02-15T19:45:21Z
dc.date.available2019-02-15T19:45:21Z
dc.date.issued2019-02-08
dc.identifier.urihttp://hdl.handle.net/11323/2551spa
dc.description.abstractThe present study deals with the nano-mineralogy and geochemistry of ultrafine particles in construction waste from the Porto Alegre region in Southern Brazil. Uncontrolled construction waste dumps and poor management practices in formal disposal sites in the area may increase exposure risks to population. Whilst the physicochemical properties of construction wastes are well documented in the literature, the characteristics of nanoparticles in their formulations are not well known. Given that degradation of construction materials may unlock and enable further release of nano-particulates present, we focused on the <63 mm fraction to examine the geochemistry of inhalable nano-particulates that could cause adverse health impacts on local communities. A particular feature across the studied wastes are the numerous aerodynamically favourable, spherical-shaped nanoparticles of magnetite, rutile and anatase. The detected nanoparticles contained a number of elements including Al, As, Au, Ca, Cd, Co, Cr, Cu, Hg, Na, Fe, K, S, Sn, Si and. An enrichment in metals and metalloids such as As, Co, Cr, Cu, Hg, Fe, Sn or Ta in particles in the nano-scale range in relation to larger particles was observed. The presence of carbon nanotubes was also noted. The leaching tests showed that the construction wastes did not reach the limits for their disposal as hazardous waste according the European Directive. Whilst the majority of trace elements were highly immobile, the water extractability for oxyanionic-forming metalloids suggests possible migration to surface and groundwater bodies. This work seeks to bring awareness on the impacts of unsustainable construction waste management, and the relevance of improved regulations regarding their final disposal.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectNanoparticlesspa
dc.subjectHazardous elementsspa
dc.subjectEnvironmental impactsspa
dc.subjectCivil construction wastespa
dc.titleNanoparticles from construction wastes: A problem to health and the environmentspa
dc.typePre-Publicaciónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAgudelo-Castaneda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. ~ Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158e170. https://doi.org/10.1016/j.envpol.2017.01. 075. Akhtar, A., Sarmah, A.K., 2018. Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J. Clean. Prod. 186, 262e281. https://doi.org/10.1016/j.jclepro.2018.03.085. Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., Nowack, B., 2013. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ. Sci. Proc. Imp. 15, 2186e2193. https://doi.org/10.1039/ C3EM00331K. Ancion, P.Y., Lear, G., Lewis, G.D., 2010. Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ. Pollut. 158, 2738e2745. https://doi.org/10. 1016/j.envpol.2010.04.013. Araújo, I., Costa, D., de Moraes, R., 2014. Identification and characterization of particulate matter concentrations at construction jobsites. Sustainability 6, 7666e7688. https://doi.org/10.3390/su6117666. Arciello, M., Rotilio, G., Rossi, L., 2005. Copper-dependent toxicity in SHSY5Yneuroblastoma cells involves mitochondrial damage. Biochem. Biophys. Res. Commun. 327, 454e459. https://doi.org/10.1016/j.bbrc.2004.12.022. Baalousha, M., Yang, Y., Vance, M.E., Colman, B., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., Hochella Jr., M.F., 2016. Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci. Total Environ. 557e558, 740e753. https://doi.org/10.1016/j.scitotenv.2016.03.132. Butera, S., Christensen, T.H., Astrup, T.F., 2015. Life cycle assessment of construction and demolition waste management. Waste Manag. 44, 196e205. https://doi. org/10.1016/j.wasman.2015.07.011. Chen, Q., Chen, Q., Zhang, Q., Qi, C., Fourie, A., Xiao, C., 2018. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 186, 418e429. https://doi.org/10.1016/j. jclepro.2018.03.131. Civeira, M., Pinheiro, R.N., Gredilla, A., de Vallejuelo, S., Oliveira, M.L.S., Ramos, C.G., Taffarel, S.R., Kautzmann, R.M., Madariaga, J.M., Silva, L.F.O., 2016a. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892e900. https:// doi.org/10.1016/j.scitotenv.2015.12.026. Civeira, M., Ramos, C.G., Oliveira, M.L.S., Kautzmann, Rubens M., Taffarel, Silvio R., Teixeira, Elba C., Silva, Luis F.O., 2016b. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142e147. https://doi.org/10.1016/j.chemosphere.2015.11.059. Coleman, N.J., Lee, W.E., Slipper, I.J., 2005. Interactions of aqueous Cu2þ, Zn2þ and Pb2þ ions with crushed concrete fines. J. Hazard Mater. 121, 203e213. https:// doi.org/10.1016/j.jhazmat.2005.02.009. CONAMA, 2011. Resolution Number 431 Stablishes a New Classification for Gypsum. National Environmental Council, Brazil. De Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169, 725e733. https://doi.org/10.1016/j. chemosphere.2016.09.125. Dorevitch, S., Demirtas, H., Perksy, V.W., Erdal, S., Conroy, L., Schoonover, T., Scheff, P.A., 2006. Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J. Air Waste Manage. 56, 1022e1032. https://doi.org/10.1080/10473289.2006.10464504. EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook: Technical Report No. 9/2009. http://www.eea.europa.eu/publications/emep-eea-emissioninventoryguidebook-2009. Engelsen, C.J., van der Sloot, H.A., Wibetoe, G., Petkovic, G., Stoltenberg-Hansson, E., Lund, W., 2009. Release of major elements from recycled concrete aggregates and geochemical modelling. Cement Concr. Res. 39, 446e459. https://doi.org/ 10.1016/j.cemconres.2009.02.001. E"stokova, A., Pala ! "s"cakov ! a, L., Singovszk ! a, E., Holub, M., 2012. Analysis of the chro- ! mium concentrations in cement materials. Procedia Eng. 42, 123e130. https:// doi.org/10.1016/j.proeng.2012.07.402. European Committee for Standardisation, 2002. EN 12457-2:2002 Characterisation of Waste - Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 Mm. G! alvez-Martos, J.-L., Styles, D., Schoenberger, H., Zeschmar-Lahl, B., 2018. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 136, 166e178. https://doi.org/10.1016/j.resconrec.2018.04.016. Galvín, A.P., Ayuso, J., García, I., Jimenez, J.R., Guti ! errez, F., 2014. The effect of ! compaction on the leaching and pollutant emission time of recycled aggregates from construction and demolition waste. J. Clean. Prod. 83, 294e304. https:// doi.org/10.1016/j.jclepro.2014.07.074. Geraldo, R.H., Pinheiro, S., Silva, J.S., Andrade, H.M.C., Dweck, J., Gonçalves, J.P., Camarini, G., 2017. Gypsum plaster waste recycling: a potential environmental and industrial solution. J. Clean. Prod. 164, 288e300. https://doi.org/10.1016/j. jclepro.2017.06.188. Giere, R., Blackford, M., Smith, K., 2006. TEM study of PM2.5 emitted from coal and ! tire combustion in a thermal power station. Environ. Sci. Technol. 40, 6235e6240. https://doi.org/10.1021/es060423m. Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J., Grazulevicius, T., 2009. Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol. J. Environ. Stud. 18, 819e825. Gredilla, A., de Vallejuelo, S.F.O., Gomez-Nubla, L., Carrero, J.A., de Leao, F.B., ~ Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. Res. 24, 333e345. https://doi. org/10.1007/s11356-017-9831-6. Izquierdo, M., Querol, X., 2012. Leaching behaviour of elements from coal combustion fly ash: an overview. Int. J. Coal Geol. 94, 54e66. https://doi.org/10. 1016/j.coal.2011.10.006. Izquierdo, M., Lopez-Soler, A., Ramonich, E.V., Barra, M., Querol, X., 2002. Charac- ! terisation of bottom ash from municipal solid waste incineration in Catalonia. J. Chem. Technol. Biotechnol. 77, 576e583. https://doi.org/10.1002/jctb.605. Izquierdo, M., Querol, X., Josa, A., Vazquez, E., Lopez-Soler, A., 2008. Comparison ! between laboratory and field leachability of MSWI bottom ash as a road material. Sci. Total Environ. 389, 10e19. https://doi.org/10.1016/j.scitotenv.2007.08. 020. Jeli!c, I., " Sljivi!c-Ivanovi!c, M., Dimovi!c, S., Antonijevi!c, D., Jovi!c, M., Mirkovi!c, M., Smi"ciklas, I., 2018. The applicability of construction and demolition waste components for radionuclide sorption. J. Clean. Prod. 171, 322e332. https://doi. org/10.1016/j.jclepro.2017.09.220. Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M., 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158, 2900e2905. https://doi.org/10.1016/j.envpol.2010.06.009. Kan, A.T., Fu, G., Tomson, M.B., 2003. Effect of methanol and ethylene glycol on sulfates and halite scale formation. Ind. Eng. Chem. Res. 42, 2399e2408. https:// doi.org/10.1021/ie020724e. Lee, J., Mahendra, S., Alvarez, P.J.J., 2010. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4, 3580e3590. https://doi.org/589-599.10.1021/ nn100866w. Leon-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., ! Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589e599. https://doi.org/10.1016/j.scitotenv.2017.12.283. Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, Rubens M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470e471, 444e452. https://doi.org/10.1016/j. scitotenv.2013.10.007. McGee, J.K., Chen, L.C., Cohen, M.D., Chee, G.R., Prophete, C.M., Haykal-Coates, N., Wasson, S.J., Conner, T.L., Costa, D.L., Gavett, S.H., 2003. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ. Health Perspect. 111, 972e980. Oberdorster, G., Castranova, V., Asgharian, B., Sayre, P., 2015. Inhalation exposure to € carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J. Toxicol. Environ. Health B 18, 121e212. https://doi.org/10.1080/ 10937404.2015.1051611. Oliveira, M.L.S., da Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 160, 562e567. https://doi.org/10.1016/j.envres.2017.08.009. Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 14, 1e11. https://doi.org/10.1007/s11051-012-1109-9. Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L., Tuncali, E., 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33, 255e271. https://doi.org/10.1016/S0166- 5162(96)00044-4. Silva, L.F.O., Moreno, T., Querol, X., 2009. An introductory TEM study of Fenanominerals within coal fly ash. Sci. Total Environ. 407, 4972e4974. https:// doi.org/10.1016%2Fj.scitotenv.2009.05.044. Stohs, S.J., Bagchi, D., 2005. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18, 321e336. https://doi.org/10.1016/0891-5849(94)00159-H. Suarez, S., Roca, X., Gasso, S., 2016. Product-speci ! fic life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context. J. Clean. Prod. 117, 150e159. https://doi.org/ 10.1016/j.jclepro.2016.01.044. Tavira, J., Jimenez, J.R., Carvalho, M.T., Evangelista, L., de Brito, J., 2018. Recycling ! screening waste and recycled mixed aggregates from construction and demolition waste in paved bike lanes. J. Clean. Prod. 190, 211e220. https://doi.org/10. 1016/j.jclepro.2018.04.128. Tixier, G., Lafont, M., Grapentine, L., Rochfort, Q., Marsalek, J., 2011. Ecological risk assessment of urban stormwater ponds: literature review and proposal of a new conceptual approach providing ecological quality goals and the associated bioassessment tools. Ecol. Indicat. 11, 1497e1506. https://doi.org/10.1016/j. ecolind.2011.03.027. United Nations - Department of Economic and Social Affairs, 2014. World Urbanization Prospects. The 2014 Revision. ST/ESA/SER.A/352. 32p. U.S. Environmental Protection Agency (U.S. EPA), 1990. Clean Air Act Amendments of 1990, 1st Congress (1989.1990). U.S. EPA, Washington, DC. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N., 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242e2250. https://doi.org/10.1021/es204168d. Wilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, marcos M.L.S., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O., Hopps, S.D., Thomas, G.A., Hower, J.C., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy Fuel. 29, 7168e7177. https://doi.org/10.1021/acs.energyfuels.5b02033. Yang, J.P., Zhao, Y.C., Zhang, J.Y., Zheng, C.G., 2016. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164, 419e428. https://doi.org/10.1016/j.fuel.2015.08.012.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem