Mostrar el registro sencillo del ítem

dc.contributor.advisorDuque, José Alejandrospa
dc.contributor.authorBarros Ayala, Jorge Andresspa
dc.date.accessioned2019-04-03T13:42:56Z
dc.date.available2019-04-03T13:42:56Z
dc.date.issued2019-03-15
dc.identifier.urihttp://hdl.handle.net/11323/2982spa
dc.description.abstractThe experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given by the maximum void ratio, which is given at the loosest state of the material and the minimum void ratio in the densest state of the material. The investigation was developed in three phases, in the first one twenty artificial granulometric soils were built with granular characteristics, split into four groups of five curves with an average diameter of the material which are approximately equal. Then, in the second phase of this investigation, the maximum and minimum void ratios were determined for every granulometric curve created. Finally, statistic correlations were proposed between the granulometric characteristics and the maximum and minimum void ratios for the obtained data in the lab and the data reported in the literaturespa
dc.description.abstractLas observaciones experimentales indican que el comportamiento mecánico de los suelos no depende solo de su estructura y de los estados de esfuerzos, sino también de sus relaciones de vacíos. Esta última corresponde al volumen de vacíos de un suelo entre su volumen de sólidos. La relación de vacíos se encuentra en un rango delimitado por la relación de vacíos máxima, que se da en el estado más suelto del material y la relación de vacíos mínima que se presenta en el máximo estado de densidad del material. Durante esta investigación se analiza la influencia de las características granulométricas de suelos granulares en las relaciones de vacíos mínimas y máximas. La investigación fue desarrollada en tres fases, en la primera se construyeron artificialmente veinte curvas granulométricas de suelos con características granulares, agrupadas en cuatro grupos de a cinco curvas con diámetro promedio del material aproximadamente igual. Posteriormente, en la segunda fase de esta investigación se determinaron las relaciones de vacíos máximas y mínimas para cada una de las curvas granulométricas creadas. Finalmente, se propusieron correlaciones estadísticas entre las características granulométricas y las relaciones de vacíos máximas y mínimas para los datos obtenidos en el laboratorio y datos reportados en la literaturaspa
dc.language.isospa
dc.publisherUniversidad de la Costaspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectDistribución granulométricaspa
dc.subjectRelación de vacíos máximaspa
dc.subjectRelación de vacíos mínimaspa
dc.subjectSuelos granularesspa
dc.subjectGrain size distribution maximum void ratiospa
dc.subjectMinimum void ratiospa
dc.subjectGranular soilsspa
dc.titleInfluencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granularesspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.coasesorTarazona Buitrago, Nairospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.programIngeniería Civilspa
dc.relation.referencesAberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334. Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77. Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64. Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217. Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7. Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980. Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127. Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning. Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304. Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18. Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31. Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602. D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14. D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9. Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations. Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. Leoni, A. (2005). Propiedades físicas de los suelos. Argentina. Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique. Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78. Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344. Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89. Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11. Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231. Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64. Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine. Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320. Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549. Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102. Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288. Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761. Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294. Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem