Show simple item record

dc.creatorCarpintero, Carlos
dc.creatorGutierrez, Alexander
dc.creatorRosas, Ennis
dc.creatorSanabria, Jose
dc.date.accessioned2019-04-09T19:35:30Z
dc.date.available2019-04-09T19:35:30Z
dc.date.issued2019
dc.identifier.issn0862-7959
dc.identifier.urihttp://hdl.handle.net/11323/3022
dc.description.abstractWe study the relationships between the spectra derived from Fredholm theory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded p-variation in Wiener’s sense coincide. Additional illustrative results are given too.es_ES
dc.language.isoenges_ES
dc.publisherMathematica Bohemicaes_ES
dc.rightsAtribución – No comercial – Compartir iguales_ES
dc.subjectrestriction of an operatores_ES
dc.subjectspectral propertyes_ES
dc.subjectsemi-Fredholm spectraes_ES
dc.subjectmultiplication operatores_ES
dc.titleA note on preservation of spectra for two given operatorses_ES
dc.typearticlees_ES
dcterms.references[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004. zbl MR doi [2] P. Aiena: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251–263. zbl MR [3] P. Aiena, M. T. Biondi, C. Carpintero: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848. zbl MR doi [4] F. R. Astudillo-Villaba, R. E. Castillo, J. C. Ramos-Fern´andez: Multiplication operators on the spaces of functions of bounded p-variation in Wiener’s sense. Real Anal. Exch. 42 (2017), 329–344. zbl MR doi [5] B. A. Barnes: The spectral and Fredholm theory of extensions of bounded linear operators. Proc. Am. Math. Soc. 105 (1989), 941–949. zbl MR doi [6] B. A. Barnes: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735–1740. zbl MR doi [7] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244–249. zbl MR doi [8] M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457–465. zbl MR doi [9] C. Carpintero, D. Mu˜noz, E. Rosas, J. Sanabria, O. Garc´ıa: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215–1228. zbl MR doi [10] J. K. Finch: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61–69. zbl MR doi [11] H. G. Heuser: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1982.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record