Mostrar el registro sencillo del ítem

dc.contributor.authorSantamaría-García, Hernandospa
dc.contributor.authorIbáñez, Agustínspa
dc.contributor.authorMontaño, Synellaspa
dc.contributor.authorGarcía, Adolfo Martínspa
dc.contributor.authorPatiño-Saenz, Michelspa
dc.contributor.authorPino, Marianaspa
dc.contributor.authorIdarraga, Claudiaspa
dc.contributor.authorBaez, Sandra Jimenaspa
dc.date.accessioned2019-05-15T12:51:27Z
dc.date.available2019-05-15T12:51:27Z
dc.date.issued2019-02-07
dc.identifier.issn1662-5153spa
dc.identifier.urihttp://hdl.handle.net/11323/3326spa
dc.description.abstractBackground: Adolescent offenders (AOs) are characterized by social-norm transgression and aggressive behaviors. Those traits have been associated with alterations in socio-cognitive processes, including facial emotion recognition. While this would suggest that AOs tend to interpret negative emotional cues as threatening information, most research has relied on context-free stimuli, thus failing to directly track integrative processes typical of everyday cognition. Methods: In this study, we assessed the impact of body language and surrounding context on facial emotion recognition in AOs and non-offenders (NOs). We recruited 35 AOs from a reform school for young male offenders and 30 NOs matched for age and sex with the former group. All participants completed a well-validated task aimed to determine how contextual cues (i.e., emotional body language and surrounding context) influence facial emotion recognition through the use of congruent and incongruent combinations of facial and bodily emotional information. Results: This study showed that AOs tend to overvalue bodily and contextual signals in emotion recognition, with poorer facial-emotion categorization and increased sensitivity to context information in incongruent face-body scenarios. This pattern was associated with executive dysfunctions and disruptive behaviors, as well as with gray matter (GM) of brain regions supporting body-face recognition [fusiform gyrus (FG)], emotion processing [cingulate cortex (CC), superior temporal gyrus (STG)], contextual integration (precuneus, STG), and motor resonance [cerebellum, supplementary motor area (SMA)]. Discussion: Together, our results pave the way for a better understanding of the neurocognitive association between contextual emotion recognition, behavioral regulation, cognitive control, and externalized behaviors in AOs.spa
dc.description.abstractAntecedentes: los delincuentes adolescentes (AO) se caracterizan por la transgresión de las normas sociales y los comportamientos agresivos. Esos rasgos se han asociado con alteraciones en los procesos sociocognitivos, incluido el reconocimiento de emociones faciales. Si bien esto sugiere que los AO tienden a interpretar señales emocionales negativas como información amenazadora, la mayoría de las investigaciones se basan en estímulos sin contexto, por lo que no logran rastrear directamente los procesos de integración típicos de la cognición cotidiana. Métodos: en este estudio, evaluamos el impacto del lenguaje corporal y el contexto circundante en el reconocimiento de emociones faciales en AO y no delincuentes (NO). Reclutamos a 35 AO de una escuela de reforma para jóvenes infractores y 30 NO combinados por edad y sexo con el grupo anterior. Todos los participantes completaron una tarea bien validada dirigida a determinar cómo las señales contextuales (es decir, el lenguaje corporal emocional y el contexto circundante) influyen en el reconocimiento de la emoción facial mediante el uso de combinaciones congruentes e incongruentes de información emocional facial y corporal. Resultados: este estudio demostró que los AO tienden a sobrevalorar las señales corporales y contextuales en el reconocimiento de emociones, con una clasificación más pobre de la emoción facial y una mayor sensibilidad a la información de contexto en escenarios de rostro y cuerpo incongruentes. Este patrón se asoció con disfunciones ejecutivas y conductas disruptivas, así como con la materia gris (GM) de las regiones cerebrales que apoyan el reconocimiento cuerpo-cara [giro fusiforme (FG)], procesamiento de emociones [corteza cingulada (CC), giro temporal superior (STG) )], integración contextual (precuneus, STG) y resonancia motora [cerebelo, área motora suplementaria (SMA)]. Discusión: Juntos, nuestros resultados allanan el camino para una mejor comprensión de la asociación neurocognitiva entre el reconocimiento de la emoción contextual, la regulación del comportamiento, el control cognitivo y las conductas externalizadas en los AO.spa
dc.language.isoeng
dc.publisherFrontiers Media S.A.spa
dc.relation.ispartofDOI: 10.3389/fnbeh.2019.00034spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourceFrontiers in behavioral neurosciencespa
dc.subjectAdolescent offendersspa
dc.subjectEmotion recognitionspa
dc.subjectEmotion integrationspa
dc.subjectBrain morphologyspa
dc.subjectDisruptive behaviorsspa
dc.subjectDelincuentes adolescentesspa
dc.subjectReconocimiento de emocionesspa
dc.subjectIntegración de emocionesspa
dc.subjectMorfología cerebralspa
dc.subjectConductas disruptivasspa
dc.titleOut of context, beyond the face: Neuroanatomical pathways of emotional face-body language integration in adolescent offendersspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAdolfi, F., Couto, B., Richter, F., Decety, J., Lopez, J., Sigman, M., et al. (2016). Convergence of interoception, emotion, and social cognition: a twofold fMRI meta-analysis and lesion approach. Cortex 88, 124–142. doi: 10.1016/j.cortex. 2016.12.019spa
dc.relation.referencesAhmed, S. P., Bittencourt-Hewitt, A., and Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Dev. Cogn. Neurosci. 15, 11–25. doi: 10.1016/j.dcn.2015.07.006spa
dc.relation.referencesAmoruso, L., Gelormini, C., Aboitiz, F., Alvarez Gonzalez, M., Manes, F., Cardona, J. F., et al. (2013). N400 ERPs for actions: building meaning in context. Front. Hum. Neurosci. 7:57. doi: 10.3389/fnhum.2013.00057spa
dc.relation.referencesAshburner, J., and Friston, K. J. (2000). Voxel-based morphometry—the methods. Neuroimage 11, 805–821. doi: 10.1006/nimg.2000.0582spa
dc.relation.referencesAviezer, H., Bentin, S., Hassin, R. R., Meschino, W. S., Kennedy, J., Grewal, S., et al. (2009). Not on the face alone: perception of contextualized face expressions in Huntington’s disease. Brain 132, 1633–1644. doi: 10.1093/brain/awp067spa
dc.relation.referencesAviezer, H., Hassin, R. R., Ryan, J., Grady, C., Susskind, J., Anderson, A., et al. (2008). Angry, disgusted, or Afraid? Studies on the malleability of emotion perception. Psychol. Sci. 19, 724–732. doi: 10.1111/j.1467-9280.2008.02148.xspa
dc.relation.referencesAviezer, H., Trope, Y., and Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science 338, 1225–1229. doi: 10.1126/science.1224313spa
dc.relation.referencesBachmann, J., Munzert, J., and Krüger, B. (2018). Neural underpinnings of the perception of emotional states derived from biological human motion: a review of neuroimaging research. Front. Psychol. 9:1763. doi: 10.3389/fpsyg.2018.01763spa
dc.relation.referencesBaez, S., García, A. M., and Ibanez, A. (2017a). The social context network model in psychiatric and neurological diseases. Curr. Top. Behav. Neurosci. 30, 379–396. doi: 10.1007/7854_2016_443spa
dc.relation.referencesBaez, S., Herrera, E., García, A., Manes, F., Young, L., and Ibáñez, A. (2017b). Outcome-oriented moral evaluation in terrorists. Nat. Hum. Behav. 1:0165. doi: 10.1038/s41562-017-0165spa
dc.relation.referencesBaez, S., Herrera, E., García, A. M., Huepe, D., Santamaría-García, H., and Ibáñez, A. (2018a). Increased moral condemnation of accidental harm in institutionalized adolescents. Sci. Rep. 8:11609. doi: 10.1038/s41598-018-29956-9spa
dc.relation.referencesBaez, S., Pino, M., Berrío, M., Santamaría-García, H., Sedeño, L., García, A. M., et al. (2018b). Corticostriatal signatures of schadenfreude: evidence from Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 89, 112–116. doi: 10.1136/jnnp-2017-316055spa
dc.relation.referencesBaez, S., and Ibanez, A. (2014). The effects of context processing on social cognition impairments in adults with Asperger’s syndrome. Front. Neurosci. 8:270. doi: 10.3389/fnins.2014.00270spa
dc.relation.referencesBaez, S., Ibanez, A., Gleichgerrcht, E., Perez, A., Roca, M., Manes, F., et al. (2014). The utility of IFS (INECO Frontal Screening) for the detection of executive dysfunction in adults with bipolar disorder and ADHD. Psychiatry Res. 216, 269–276. doi: 10.1016/j.psychres.2014.01.020spa
dc.relation.referencesBaez, S., Rattazzi, A., Gonzalez-Gadea, M. L., Torralva, T., Vigliecca, N. S., Decety, J., et al. (2012). Integrating intention and context: assessing social cognition in adults with Asperger syndrome. Front. Hum. Neurosci. 6:302. doi: 10.3389/fnhum.2012.00302spa
dc.relation.referencesBarrett, L. F., Mesquita, B., and Gendron, M. (2011). Context in emotion perception. Curr. Dir. Psychol. Sci. 20, 286–290. doi: 10.1177/09637214114 22522spa
dc.relation.referencesBest, M., Williams, J. M., and Coccaro, E. F. (2002). Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc. Natl. Acad. Sci. U S A 99, 8448–8453. doi: 10.1073/pnas.1126 04099spa
dc.relation.referencesBlair, R. J., Colledge, E., Murray, L., and Mitchell, D. G. (2001). A selective impairment in the processing of sad and fearful expressions in children with psychopathic tendencies. J. Abnorm. Child Psychol. 29, 491–498. doi: 10.1023/A:1012225108281spa
dc.relation.referencesBowen, K. L., Morgan, J. E., Moore, S. C., and van Goozen, S. H. M. (2014). Young offenders’ emotion recognition dysfunction across emotion intensities: explaining variation using psychopathic traits, conduct disorder and offense severity. J. Psychopathol. Behav. Assess. 36, 60–73. doi: 10.1007/s10862-013- 9368-zspa
dc.relation.referencesBrazil, I. A., Maes, J. H., Scheper, I., Bulten, B. H., Kessels, R. P., Verkes, R. J., et al. (2013). Reversal deficits in individuals with psychopathy in explici but not implicit learning conditions. J. Psychiatry Neurosci. 38, E13–E20. doi: 10.1503/jpn.120152spa
dc.relation.referencesBreslau, J., Miller, E., Breslau, N., Bohnert, K., Lucia, V., and Schweitzer, J. (2009). The impact of early behavior disturbances on academic achievement in high school. Pediatrics 123, 1472–1476. doi: 10.1542/peds.2008-1406spa
dc.relation.referencesBudhiraja, M., Savic, I., Lindner, P., Jokinen, J., Tiihonen, J., and Hodgins, S. (2017). Brain structure abnormalities in young women who presented conduct disorder in childhood/adolescence. Cogn. Affect. Behav. Neurosci. 17, 869–885. doi: 10.3758/s13415-017-0519-7spa
dc.relation.referencesBurnett, S., Sebastian, C., Cohen Kadosh, K., and Blakemore, S.-J. (2011). The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci. Biobehav. Rev. 35, 1654–1664. doi: 10.1016/j.neubiorev.2010.10.011spa
dc.relation.referencesBurra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., and Pegna, A. J. (2017). Affective blindsight relies on low spatial frequencies. Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.10.009 [Epub ahead of print].spa
dc.relation.referencesCope, L. M., Ermer, E., Nyalakanti, P. K., Calhoun, V. D., and Kiehl, K. A. (2014). Paralimbic gray matter reductions in incarcerated adolescent females with psychopathic traits. J. Abnorm. Child Psychol. 42, 659–668. doi: 10.1007/s10802-013-9810-4spa
dc.relation.referencesCouto, B., Adolfi, F., Velasquez, M., Mesow, M., Feinstein, J., Canales-Johnson, A., et al. (2015). Heart evoked potential triggers brain responses to natural affective scenes: a preliminary study. Auton. Neurosci. 193, 132–137. doi: 10.1016/j. autneu.2015.06.006spa
dc.relation.referencesDavies-Thompson, J., Elli, G. V., Rezk, M., Benetti, S., van Ackeren, M., and Collignon, O. (2018). Hierarchical brain network for face and voice integration of emotion expression. Cereb. Cortex doi: 10.1093/cercor/bhy240 [Epub ahead of print].spa
dc.relation.referencesde Gelder, B. (2006). Towards the neurobiology of emotional body language. Nat. Rev. Neurosci. 7, 242–249. doi: 10.1038/nrn1872spa
dc.relation.referencesde Gelder, B., Bocker, K. B., Tuomainen, J., Hensen, M., and Vroomen, J. (1999). The combined perception of emotion from voice and face: early interaction revealed by human electric brain responses. Neurosci. Lett. 260, 133–136. doi: 10.1016/s0304-3940(98)00963-xspa
dc.relation.referencesde Gelder, B., Meeren, H. K., Righart, R., van den Stock, J., van de Riet, W. A., and Tamietto, M. (2006). Beyond the face: exploring rapid influences of context on face processing. Prog. Brain Res. 155, 37–48. doi: 10.1016/S0079-6123(06)55003-4spa
dc.relation.referencesde Gelder, B., Snyder, J., Greve, D., Gerard, G., and Hadjikhani, N. (2004). Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc. Natl. Acad. Sci. U S A 101, 16701–16706. doi: 10.1073/pnas.0407042101 de Pedraza, F. G., de Rincón, D. M., and Montealegre, G. (2012). Validación de la prueba de J. C. Raven: matrices progresivas y de la prueba ACE para estudiantes de primer año universitario. Rev. Colomb. Psicol. 5, 129–136. doi: 10.15446/rcpspa
dc.relation.referencesDiano, M., Celeghin, A., Bagnis, A., and Tamietto, M. (2017). Amygdala response to emotional stimuli without awareness: facts and interpretations. Front. Psychol. 7:2029. doi: 10.3389/fpsyg.2016.02029spa
dc.relation.referencesDodge, K. A., Price, J. M., Bachorowski, J. A., and Newman, J. P. (1990). Hostile attributional biases in severely aggressive adolescents. J. Abnorm. Psychol. 99, 385–392. doi: 10.1037//0021-843x.99.4.385spa
dc.relation.referencesEscobar, M. J., Huepe, D., Decety, J., Sedeño, L., Messow, M. K., Baez, S., et al. (2014). Brain signatures of moral sensitivity in adolescents with early social deprivation. Sci. Rep. 4:5354. doi: 10.1038/srep05354spa
dc.relation.referencesEtkin, A., Egner, T., and Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93. doi: 10.1016/j.tics.2010.11.004spa
dc.relation.referencesFairchild, G., Stobbe, Y., van Goozen, S. H., Calder, A. J., and Goodyer, I. M. (2010). Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biol. Psychiatry 68, 272–279. doi: 10.1016/j.biopsych.2010.02.019spa
dc.relation.referencesFairchild, G., Van Goozen, S. H., Calder, A. J., Stollery, S. J., and Goodyer, I. M. (2009). Deficits in facial expression recognition in male adolescents with earlyonset or adolescence-onset conduct disorder. J. Child Psychol. Psychiatry 50, 627–636. doi: 10.1111/j.1469-7610.2008.02020.xspa
dc.relation.referencesFairchild, G., Van Goozen, S. H., Stollery, S. J., and Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biol. Psychiatry 63, 279–285. doi: 10.1016/j.biopsych.2007. 06.019spa
dc.relation.referencesFerrari, C., Lega, C., Vernice, M., Tamietto, M., Mende-Siedlecki, P., Vecchi, T., et al. (2016). The dorsomedial prefrontal cortex plays a causal role in integrating social impressions from faces and verbal descriptions. Cereb. Cortex 26, 156–165. doi: 10.1093/cercor/bhu186spa
dc.relation.referencesFrith, C. (2009). Role of facial expressions in social interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3453–3458. doi: 10.1098/rstb.2009.0142spa
dc.relation.referencesGonzalez-Gadea, M. L., Herrera, E., Parra, M., Gomez Mendez, P., Baez, S., Manes, F., et al. (2014). Emotion recognition and cognitive empathy deficits in adolescent offenders revealed by context-sensitive tasks. Front. Hum. Neurosci. 8:850. doi: 10.3389/fnhum.2014.00850spa
dc.relation.referencesGrèzes, J., Pichon, S., and de Gelder, B. (2007). Perceiving fear in dynamic body expressions. Neuroimage 35, 959–967. doi: 10.1016/j.neuroimage.2006.11.030 Hassin, R. R., Aviezer, H., and Bentin, S. (2013). Inherently ambiguous: facial expressions of emotions, in context. Emot. Rev. 5, 60–65. doi: 10.1177/1754073912451331spa
dc.relation.referencesHubble, K., Bowen, K. L., Moore, S. C., and van Goozen, S. H. (2015). Improving negative emotion recognition in young offenders reduces subsequent crime. PLoS One 10:e0132035. doi: 10.1371/journal.pone.0132035spa
dc.relation.referencesIbáñez, A., Aguado, J., Baez, S., Huepe, D., Lopez, V., Ortega, R., et al. (2014). From neural signatures of emotional modulation to social cognition: individual differences in healthy volunteers and psychiatric participants. Soc. Cogn. Affect. Neurosci. 9, 939–950. doi: 10.1093/scan/nst067spa
dc.relation.referencesIbañez, A., and Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology 78, 1354–1362. doi: 10.1212/wnl.0b013e3182518375spa
dc.relation.referencesJusyte, A., and Schonenberg, M. (2017). Impaired social cognition in violent offenders: perceptual deficit or cognitive bias? Eur. Arch. Psychiatry Clin. Neurosci. 267, 257–266. doi: 10.1007/s00406-016-0727-0spa
dc.relation.referencesKanwisher, N., and Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2109–2128. doi: 10.1098/rstb.2006.1934spa
dc.relation.referencesKarnath, H. O., Baier, B., and Nägele, T. (2005). Awareness of the functioning of one’s own limbs mediated by the insular cortex? J. Neurosci. 25, 7134–7138. doi: 10.1523/JNEUROSCI.1590-05.2005spa
dc.relation.referencesKret, M. E., and de Gelder, B. (2013). When a smile becomes a fist: the perception of facial and bodily expressions of emotion in violent offenders. Exp. Brain Res. 228, 399–410. doi: 10.1007/s00221-013-3557-6spa
dc.relation.referencesKuin, N. C., Masthoff, E. D. M., Munafo, M. R., and Penton-Voak, I. S. (2017). Perceiving the evil eye: investigating hostile interpretation of ambiguous facial emotional expression in violent and non-violent offenders. PLoS One 12:e0187080. doi: 10.1371/journal.pone.0187080spa
dc.relation.referencesKumfor, F., Ibañez, A., Hutchings, R., Hazelton, J., Hodges, J., and Piguet, O. (2018). Beyond the face: how context modulates emotion processing in frontotemporal dementia subtypes. Brain 141, 1172–1185. doi: 10.1093/brain/ awy002spa
dc.relation.referencesLenroot, R. K., and Giedd, J. N. (2010). Sex differences in the adolescent brain. Brain Cogn. 72, 46–55. doi: 10.1016/j.bandc.2009.10.008spa
dc.relation.referencesMaier, M. E., and di Pellegrino, G. (2012). Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J. Cogn. Neurosci. 24, 2070–2079. doi: 10.1162/jocn_a_00266spa
dc.relation.referencesMaren, S., Phan, K. L., and Liberzon, I. (2013). The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428. doi: 10.1038/nrn3492spa
dc.relation.referencesMcLeod, J. D., Uemura, R., and Rohrman, S. (2012). Adolescent mental health, behavior problems, and academic achievement. J. Health Soc. Behav. 53, 482–497. doi: 10.1177/0022146512462888spa
dc.relation.referencesMelloni, M., Billeke, P., Baez, S., Hesse, E., de la Fuente, L., Forno, G., et al. (2016). Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain 139, 3022–3040. doi: 10.1093/brain/aww231spa
dc.relation.referencesNeal, D. T., and Chartrand, T. L. (2011). Embodied emotion perception: amplifying and dampening facial feedback modulates emotion perception accuracy. Soc. Psychol. Pers. Sci. 2, 673–678. doi: 10.1177/1948550611406138spa
dc.relation.referencesNunes, D., Monteiro, L., and Lopes, E. (2014). INECO frontal screening: a tool to assess executive functions in depression. Psicol. Clin. 26, 177–196. doi: 10.1590/S0103-56652014000200011spa
dc.relation.referencesO’Callaghan, C., Bertoux, M., Irish, M., Shine, J. M., Wong, S., Spiliopoulos, L., et al. (2016). Fair play: social norm compliance failures in behavioural variant frontotemporal dementia. Brain 139, 204–216. doi: 10.1093/brain/awv315spa
dc.relation.referencesOnitsuka, T., Shenton, M. E., Kasai, K., Nestor, P. G., Toner, S. K., Kikinis, R., et al. (2003). Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch. Gen. Psychiatry 60, 349–355. doi: 10.1001/archpsyc.60. 4.349spa
dc.relation.referencesOosterhof, N. N., and Todorov, A. (2008). The functional basis of face evaluation. Proc. Natl. Acad. Sci. U S A 105, 11087–11092. doi: 10.1073/pnas.0805664105spa
dc.relation.referencesOrgs, G., Dovern, A., Hagura, N., Haggard, P., Fink, G. R., and Weiss, P. H. (2016). Constructing visual perception of body movement with the motor cortex. Cereb. Cortex 26, 440–449. doi: 10.1093/cercor/bhv262spa
dc.relation.referencesPassamonti, L., Fairchild, G., Goodyer, I. M., Hurford, G., Hagan, C. C.,spa
dc.relation.referencesRowe, J. B., et al. (2010). Neural abnormalities in early-onset and adolescenceonset conduct disorder. Arch. Gen. Psychiatry 67, 729–738. doi: 10.1001/ archgenpsychiatry.2010.75spa
dc.relation.referencesPeelen, M. V., Atkinson, A. P., Andersson, F., and Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Soc. Cogn. Affect. Neurosci. 2, 274–283. doi: 10.1093/scan/nsm023spa
dc.relation.referencesPeelen, M. V., and Downing, P. E. (2007). The neural basis of visual body perception. Nat. Rev. Neurosci. 8, 636–648. doi: 10.1038/nrn2195spa
dc.relation.referencesPereira, M., de Oliveira, L., Erthal, F., Joffily, M., Mocaiber, I., Volchan, E., et al. (2010). Emotion affects action: midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals. Cogn. Affect. Behav. Neurosci. 10, 94–106. doi: 10.3758/cabn.10.1.94spa
dc.relation.referencesPhilipp-Wiegmann, F., Rösler, M., Retz-Junginger, P., and Retz, W. (2017). Emotional facial recognition in proactive and reactive violent offenders. Eur. Arch. Psychiatry Clin. Neurosci. 267, 687–695. doi: 10.1007/s00406-017- 0776-zspa
dc.relation.referencesPiotrowska, P. J., Stride, C. B., Croft, S. E., and Rowe, R. (2015). Socioeconomic status and antisocial behaviour among children and adolescents: a systematic review and meta-analysis. Clin. Psychol. Rev. 35, 47–55. doi: 10.1016/j.cpr.2014. 11.003spa
dc.relation.referencesPiquero, A. R., Jennings, W. G., Diamond, B., and Reingle, J. M. (2015). A systematic review of age, sex, ethnicity, and race as predictors of violent recidivism. Int. J. Offender Ther. Comp. Criminol. 59, 5–26. doi: 10.1177/ 0306624x13514733spa
dc.relation.referencesPoyo Solanas, M., Zhan, M., Vaessen, M., Hortensius, R., Engelen, T., and de Gelder, B. (2018). Looking at the face and seeing the whole body. Neural basis of combined face and body expressions. Soc. Cogn. Affect. Neurosci. 13, 135–144. doi: 10.1093/scan/nsx130spa
dc.relation.referencesRaven, J. C. (1960). Guide to Standard Progressive Matrices. London: HK Lewis.spa
dc.relation.referencesRogers, J. C., and De Brito, S. A. (2016). Cortical and subcortical gray matter volume in youths with conduct problems: a meta-analysis. JAMA Psychiatry 73, 64–72. doi: 10.1001/jamapsychiatry.2015.2423spa
dc.relation.referencesSantamaría-García, H., Baez, S., Reyes, P., Santamaría-García, J. A., SantacruzEscudero, J. M., Matallana, D., et al. (2017). A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration. Brain 140, 3357–3377. doi: 10.1093/brain/awx269spa
dc.relation.referencesSato, W., Uono, S., Matsuura, N., and Toichi, M. (2009). Misrecognition of facial expressions in delinquents. Child Adolesc. Psychiatry Ment. Health 3:27. doi: 10.1186/1753-2000-3-27spa
dc.relation.referencesSchwarzlose, R. F., Baker, C. I., and Kanwisher, N. (2005). Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25, 11055–11059. doi: 10.1523/JNEUROSCI.2621-05.2005spa
dc.relation.referencesSeruca, T., and Silva, C. F. (2016). Executive functioning in criminal behavior: differentiating between types of crime and exploring the relation between shifting, inhibition, and anger. Int. J. Forensic Ment. Health 15, 235–246. doi: 10.1080/14999013.2016.1158755spa
dc.relation.referencesShahid, H., Sebastian, R., Schnur, T. T., Hanayik, T., Wright, A., Tippett, D. C., et al. (2017). Important considerations in lesion-symptom mapping: illustrations from studies of word comprehension. Hum. Brain Mapp. 38, 2990–3000. doi: 10.1002/hbm.23567spa
dc.relation.referencesSokolov, A. A., Gharabaghi, A., Tatagiba, M. S., and Pavlova, M. (2010). Cerebellar engagement in an action observation network. Cereb. Cortex 20, 486–491. doi: 10.1093/cercor/bhp117spa
dc.relation.referencesStams, G. J., Brugman, D., Dekovic, M., van Rosmalen, L., van der Laan, P., and Gibbs, J. C. (2006). The moral judgment of juvenile delinquents: a metaanalysis. J. Abnorm. Child Psychol. 34, 697–713. doi: 10.1007/s10802-006- 9056-5spa
dc.relation.referencesTamietto, M., and de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709. doi: 10.1038/nrn2889spa
dc.relation.referencesTerribilli, D., Schaufelberger, M. S., Duran, F. L., Zanetti, M. V., Curiati, P. K., Menezes, P. R., et al. (2011). Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol. Aging 32, 354–368. doi: 10.1016/j.neurobiolaging.2009.02.008spa
dc.relation.referencesTorralva, T., Roca, M., Gleichgerrcht, E., López, P., and Manes, F. (2009). INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia. J. Int. Neuropsychol. Soc. 15, 777–786. doi: 10.1017/s1355617709990415spa
dc.relation.referencesUono, S., Sato, W., Kochiyama, T., Sawada, R., Kubota, Y., Yoshimura, S., et al. (2017). Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study. Soc. Cogn. Affect. Neurosci. 12, 487–495. doi: 10.1093/scan/nsw142spa
dc.relation.referencesvan den Bos, W., Vahl, P., Güro˘glu, B., van Nunspeet, F., Colins, O., Markus, M., et al. (2014). Neural correlates of social decision-making in severely antisocial adolescents. Soc. Cogn. Affect. Neurosci. 9, 2059–2066. doi: 10.1093/scan/nsu003spa
dc.relation.referencesvan de Riet, W. A., Grezes, J., and de Gelder, B. (2009). Specific and common brain regions involved in the perception of faces and bodies and the representation of their emotional expressions. Soc. Neurosci. 4, 101–120. doi: 10.1080/17470910701865367spa
dc.relation.referencesVan den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grézes, J., and de Gelder, B. (2011). Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc. Natl. Acad. Sci. U S A 108, 16188–16193. doi: 10.1073/pnas. 1107214108spa
dc.relation.referencesVan den Stock, J., Vandenbulcke, M., Sinke, C. B., Goebel, R., and de Gelder, B. (2014). How affective information from faces and scenes interacts in the brain. Soc. Cogn. Affect. Neurosci. 9, 1481–1488. doi: 10.1093/scan/nst138spa
dc.relation.referencesVilà-Balló, A., Cunillera, T., Rostan, C., Hdez-Lafuente, P., Fuentemilla, L., and Rodríguez-Fornells, A. (2015). Neurophysiological correlates of cognitive flexibility and feedback processing in violent juvenile offenders. Brain Res. 1610, 98–109. doi: 10.1016/j.brainres.2015.03.040spa
dc.relation.referencesVuilleumier, P., and Driver, J. (2007). Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 837–855. doi: 10.1098/rstb.2007.2092spa
dc.relation.referencesVytal, K., and Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J. Cogn. Neurosci. 22, 2864–2885. doi: 10.1162/jocn.2009.21366spa
dc.relation.referencesWieser, M. J., and Keil, A. (2014). Fearful faces heighten the cortical representation of contextual threat. Neuroimage 86, 317–325. doi: 10.1016/j.neuroimage.2013. 10.008spa
dc.relation.referencesYue, T., Pan, W., and Huang, X. (2016). The relationship between trait positive empathy and brain structure: a voxel-based morphometry study. Neuroreport 27, 422–426. doi: 10.1097/wnr.0000000000000557spa
dc.relation.referencesZhang, S., and Li, C.-S. R. (2012). Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage 59, 3548–3562. doi: 10.1016/j. neuroimage.2011.11.023spa
dc.relation.referencesZou, Z., Meng, H., Ma, Z., Deng, W., Du, L., Wang, H., et al. (2013). Executive functioning deficits and childhood trauma in juvenile violent offenders in China. Psychiatry Res. 207, 218–224. doi: 10.1016/j.psychres.2012.09.013spa
dc.title.translatedFuera de contexto, más allá de la cara: vías neuroanatómicas de la integración emocional del lenguaje cara-cuerpo en adolescentes infractoresspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International