Mostrar el registro sencillo del ítem

dc.contributor.authorHormeño-Holgado, Alberto J.spa
dc.contributor.authorClemente Suárez, Vicente Javierspa
dc.date.accessioned2019-05-15T14:14:27Z
dc.date.available2019-05-15T14:14:27Z
dc.date.issued2019-01-19
dc.identifier.urihttp://hdl.handle.net/11323/3336spa
dc.description.abstractThe present research aimed: i. to analyse the psychophysiological response of soldiers undertaking a special operation selection course; ii. to study the relationship between fat and muscle loss and the psychophysiological response of soldiers undertaking a special operation selection course. We analysed 46 professional soldiers from a special operations unit (25.1 ± 5.0 years, 1.8 ± 0.1 cm, 76.8 ± 7.9 kg, 24.4 ± 2.5 kg/m2) undertaking the last phase of their 10 weeks special operation selection course. Before and immediately after the exercise the following variables were assessed: Stress subjective perception, fatigue subjective perception, rating of perceived perception, cortical arousal, body temperature, blood oxygen saturation, spirometry, isometric hand strength, lower body muscular strength, urine, body composition, life engagement test, coping flexibility scale, acceptance and action questionnaire, perceived stress scale, anxiety state, visual analogue scale and differential aptitude test. A special operation selection course induced an intense stress and physical response as suggested by the psychophysiological changes with a significant (p < 0.05) increase in fatigue and stress subjective perception, blood oxygen saturation, Ph, cognitive impairment and motivation-loss. Moreover, decreased leg strength, peak expiratory flow, cortical arousal, body composition, body weight, fat and muscle mass, anxiety stress, alertness, sadness and tension decreased after the exercise. Regarding body composition, higher muscle mass loss participants were related to a higher cognitive impairment and similar psychophysiological response than lower fat mass loss participants.spa
dc.description.abstractLa presente investigación tuvo como objetivo: i. analizar la respuesta psicofisiológica de los soldados que realizan un curso especial de selección de operaciones; ii. para estudiar la relación entre la pérdida de grasa y músculo y la respuesta psicofisiológica de los soldados que realizan un curso de selección de operaciones especiales. Analizamos 46 soldados profesionales de una unidad de operaciones especiales (25.1 ± 5.0 años, 1.8 ± 0.1 cm, 76.8 ± 7.9 kg, 24.4 ± 2.5 kg / m2) que realizaron la última fase de su curso de selección de operación especial de 10 semanas. Antes e inmediatamente después del ejercicio, se evaluaron las siguientes variables: percepción subjetiva de estrés, percepción subjetiva de fatiga, clasificación de percepción percibida, activación cortical, temperatura corporal, saturación de oxígeno en la sangre, espirometría, fuerza isométrica de las manos, fuerza muscular de la parte inferior del cuerpo, orina, composición corporal , prueba de compromiso vital, escala de flexibilidad de afrontamiento, cuestionario de aceptación y acción, escala de estrés percibido, estado de ansiedad, escala analógica visual y prueba de aptitud diferencial. Un curso de selección de operación especial indujo un estrés intenso y una respuesta física como lo sugieren los cambios psicofisiológicos con un aumento significativo (p <0.05) en la percepción subjetiva de fatiga y estrés, saturación de oxígeno en la sangre, Ph, deterioro cognitivo y pérdida de la motivación. Además, disminuyó la fuerza de las piernas, el flujo espiratorio máximo, la excitación cortical, la composición corporal, el peso corporal, la masa muscular y grasa, el estrés por ansiedad, el estado de alerta, la tristeza y la tensión disminuyeron después del ejercicio. Con respecto a la composición corporal, los participantes con mayor pérdida de masa muscular se relacionaron con un mayor deterioro cognitivo y una respuesta psicofisiológica similar a los participantes con menor pérdida de masa grasa.spa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectCortical arousalspa
dc.subjectStressspa
dc.subjectAnxietyspa
dc.subjectMilitaryspa
dc.subjectSleep deprivationspa
dc.subjectExcitación corticalspa
dc.subjectEstrésspa
dc.subjectAnsiedadspa
dc.subjectMilitarspa
dc.subjectLa privación del sueñospa
dc.titlePsychophysiological monitorization in a special operation selection coursespa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Belinchon -deMiguel, P., and Clemente -Suá rez, V. J., Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an ultraendurance mountain race. J Med Syst 42(2):32, 2018. https://doi.org/10.1007/ s10916-017-0889-y. 2. Clemente-Suárez, V. J., Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl Physiol Nutr Metab 40:269–273, 2015. https://doi.org/10.1139/ apnm-2014-0263. 3. Allison, A. L., Peres, J. C., Boettger, C. et al., Fight, flight, or fall: Autonomic nervous system reactivity during skydiving. Pers Individ Dif 53:218–223, 2012. https://doi.org/10.1016/j.paid. 2012.03.019. 4. Cavalade, M., Papadopoulou, V., Theunissen, S., and Balestra, C., Heart rate variability and critical flicker fusion frequency changes during and after parachute jumping in experienced skydivers. Eur J Appl Physiol 115:1533–1545, 2015. https://doi.org/10.1007/ s00421-015-3137-5. 5. Clemente-Suárez, V. J., Robles-Pérez, J. J., and Fernández-Lucas, J., Psychophysiological response in parachute jumps, the effect of experience and type of jump. Physiol Behav 179:178–183, 2017. https://doi.org/10.1016/j.physbeh.2017.06.006. 6. Tornero-Aguilera, J. F., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Effect of combat stress in the psychophysiological response of elite and non-elite soldiers. J Med Syst 41(6):100, 2017. https://doi. org/10.1007/s10916-017-0748-x. 7. Clemente-Suarez, V. J., Palomera, P. R., and Robles-Pérez, J. J., Psychophysiological response to acute-high-stress combat situations in professional soldiers. Stress Heal 34:247–252, 2018. https://doi.org/10.1002/smi.2778. 8. Delgado-Moreno, R., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Combat stress decreases memory of warfighters in action. J Med Syst 41:1–7, 2017. https://doi.org/10.1007/s10916-017-0772-x. 9. Sánchez-Molina, J., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Assessment of psychophysiological response and specific fine motor skills in combat units. J Med Syst 42(4):67, 2018. https://doi. org/10.1007/s10916-018-0922-9. 10. Clemente-Suárez, V. J., and Robles-Pérez, J. J., Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat. J Strength Cond Res 27:2420–2426, 2013. 11. Sánchez-Molina, J., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Effect of parachute jump in the psychophysiological response of soldiers in urban combat. J Med Syst 41(6):99, 2017. https://doi. org/10.1007/s10916-017-0749-9. 12. Hormeño-Holgado, A. J., Perez-Martinez, M. A., and ClementeSuárez, V. J., Psychophysiological response of air mobile protection teams in an air accident manoeuvre. Physiol Behav 199:79–83, 2019. https://doi.org/10.1016/j.physbeh.2018.11.006. 13. Clemente-Suárez, V. J., de la Vega, R., Robles-Pérez, J. J. et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump. Int J Psychophysiol 110:212–216, 2016. https://doi.org/10.1016/j. ijpsycho.2016.07.502. 14. Margolis, L. M., Murphy, N. E., Martini, S. et al., Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl Physiol Nutr Metab 39:1395–1401, 2014. https://doi.org/10.1139/apnm2014-0212. 15. Tharion, W. J., Lieberman, H. R., Montain, S. J. et al., Energy requirements of military personnel. Appetite 44:47–65, 2005. https://doi.org/10.1016/j.appet.2003.11.010. 16. Ojanen, T., Jalanko, P., and Kyröläinen, H., Physical fitness, hormonal, and immunological responses during prolonged military field training. Physiol Rep 6:1–10, 2018. https://doi.org/10.14814/ phy2.13850. 17. Keramidas, M. E., Gadefors, M., Nilsson, L.-O., and Eiken, O., Physiological and psychological determinants of whole-body endurance exercise following short-term sustained operations with partial sleep deprivation. Eur J Appl Physiol 118:1373–1384, 2018. https://doi.org/10.1007/s00421-018-3869-0. 18. Diaz-Manzano, M., Fuentes, J. P., Fernandez-Lucas, J. et al., Higher use of techniques studied and performance in melee combat produce a higher psychophysiological stress response. Stress Heal., 2018. https://doi.org/10.1002/smi.2829. 19. Tornero-Aguilera, J. F., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Use of psychophysiological portable devices to analyse stress response in different experienced soldiers. J Med Syst 42(4):75, 2018. https://doi.org/10.1007/s10916-018-0929-2. 20. Diaz-Manzano, M., Robles-Pérez, J. J., Herrera-Mendoza, K. et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population. J Med Syst 42(5):84, 2018. https://doi.org/10.1007/s10916-018-0945-2. 21. Newcomer, J. W., Craft, S., Hershey, T. et al., Glucocorticoidinduced impairment in declarative memory performance in adult humans. J Neurosci 14:2047–2053, 1994. https://doi.org/10.1523/ JNEUROSCI.14-04-02047.1994. 22. Clemente-Suárez, V. J., Delgado-Moreno, R., González, B. et al., Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol Behav S0031-9384(18): 30182–30183, 2018. https://doi.org/10.1016/j.physbeh.2018.04.014. 23. Armstrong, L., Soto, J., Hacker, F. J. et al., Urinary indices during dehydration, exercise and rehydratation. Occup. Heal. Ind. Med. 8: 345–355, 1998. 24. Suarez, V., Campo, D., and Gonzalez-Rave, J., Modifications to body composition after running an alpine marathon: Brief clinical report. Int Sport J 12:133–140, 2011. 25. Scheier, M. F., Wrosch, C., Baum, A. et al., The life engagement test: Assessing purpose in life. J Behav Med 29:291–298, 2006. https://doi.org/10.1007/s10865-005-9044-1. 26. El-On, J., Ben-Noun, L., Galitza, Z., and Ohana, N., Case report: Clinical and serological evaluation of echinococcosis of the spine. Trans R Soc Trop Med Hyg 97:567–569, 2003. https://doi.org/10. 1016/S0035-9203(03)80031-7. 27. Wolgast, M., What does the acceptance and action questionnaire (AAQ-II) really measure? Behav Ther 45:831–839, 2014. https:// doi.org/10.1016/j.beth.2014.07.002. 28. Cohen, S., Kamarck, T., and Mermelstein, R., A global measure of perceived stress. J Health Soc Behav 24:385–396, 1983. https://doi. org/10.2307/2136404. 29. Monk, T. H., A visual analogue scale technique to measure global vigor and affect. Psychiatry Res 27:89–99, 1989. https://doi.org/10. 1016/0165-1781(89)90013-9. 30. Bennett, G. K., Seashore, H. G., and Wesman, A. G., The differential aptitude tests: An overview. Pers Guid J 35:81–91, 1956. https:// doi.org/10.1002/j.2164-4918.1956.tb01710.x. 31. Sorby, S. A., and Baartmans, B. J., The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. J Eng Educ 89:301–307, 2000. https://doi.org/10.1002/j.2168-9830.2000.tb00529.x. 32. Gerson, H. B. P., Sorby, S. A., Wysocki, A., and Baartmans, B. J., The development and assessment of multimedia software for improving 3-D spatial visualization skills. Comput Appl Eng Educ 9: 105–113, 2001. https://doi.org/10.1002/cae.1012. 33. Contero, M., Company, P., Saorín, J. L., and Naya, F., Learning support tools for developing spatial abilities in engineering design. Int J Eng Educ 22:470–477, 2006. 34. Martin-Gutierrez, J., Saorin, J. L., Martin-Dorta, N., and Contero, M., Do video games improve spatial abilities of engineering students? Int J Eng Educ 25:1194–1204, 2009. 35. Temesi, J., Arnal, P. J., Davranche, K. et al., Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sport Exerc 45:2243–2253, 2013. https://doi.org/10.1249/MSS. 0b013e31829ce379. 36. Delgado-Moreno, R., Robles-Pérez, J. J., Aznar, S., and ClementeSuarez, V. J., Inalambric biofeedback devices to analyze strength manifestation in military population. J Med Syst 42:60, 2018. https://doi.org/10.1007/s10916-018-0914-9. 37. Johnson, M. J., Friedl, K. E., Frykman, P. N., and Moore, R. J., Loss of muscle mass is poorly reflected in grip strength performance in healthy young men. Med Sci Sports Exerc 26:235–240, 1994. 38. Montain, S. J., and Young, A. J., Diet and physical performance☆ this review contributes to a special section on U.S. Army research, guest-edited by M.L. Meiselman, F.M. Kramer, J. Soyer and P. Pliner. Appetite 40:255–267, 2003. https://doi.org/10.1016/S0195- 6663(03)00011-4. 39. Sandín, B., El estrés : un análisis basado en el papel de los factores sociales. Int J Clin Heal Psychol 3:141–157, 2003. 40. Cox, R. H., Martens, M. P., and Russell, W. D., Measuring anxiety in athletics: The revised competitive state anxiety inventory–2. J Sport Exerc Psychol 25:519–533, 2003. https://doi.org/10.1123/ jsep.25.4.519. 41. Grossman, D., and Siddle, B. K., Psychological effects of combat. In: Encyclopedia of violence, peace, & conflict. Elsevier, pp 1796– 1805, 2008. 42. Grossman, D., and Christensen, L., On combat: the psychology and physiology of deadly conflict in war and in peace. Warrior Science Publications, 2004. 43. Clemente Suárez, V. J., and Robles Pérez, J. J., Respuesta orgánica en una simulación de combate. Sanid Mil 68:97–100, 2012. https:// doi.org/10.4321/S1887-85712012000200006. 44. Clemente-Suarez, V. J., and Robles-Perez, J. J., Psychophysiological response of soldiers in urban combat. An Psicol 29: 598–603, 2013. https://doi.org/10.6018/analesps.29.2.150691. 45. Li, Z., Jiao, K., Chen, M., and Wang, C., Reducing the effects of driving fatigue with magnitopuncture stimulation. Accid Anal Prev 36:501–505, 2004. https://doi.org/10.1016/S0001-4575(03)00044-7. 46. Lieberman, H., Tharion, W., Shukitt-Hale, B. et al., Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy SEAL training. Psychopharmacology (Berl) 164:250–261, 2002. https://doi.org/10.1007/s00213-002-1217-9. 47. Murray, B., Hydration and physical performance. J Am Coll Nutr 26:542S–548S, 2007. https://doi.org/10.1080/07315724.2007. 10719656. 48. Bustamante-Sánchez, Á., Delgado-Terán, M., Clemente-Suárez, V. J., Psychophysiological response of different aircrew in normobaric hypoxia training. Ergonomics 1–9, 2018. https://doi.org/10.1080/ 00140139.2018.1510541spa
dc.title.translatedMonitorización psicofisiológica en un curso de selección de operación especial.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International