Show simple item record

dc.creatorMurray L., Christopher J
dc.creatorCallender H, Charlton S K
dc.creatorKulikoff, Xie Rachel
dc.creatorSrinivasan, Vinay
dc.creatorAbate, Degu
dc.creatorAbate, Kalkidan Hassen
dc.creatorAbay, Solomon M
dc.creatorAbbasi, Nooshin
dc.creatorAbbastabar, Hedayat
dc.creatorAlvis-Guzman, Nelson
dc.date.accessioned2019-06-04T13:22:38Z
dc.date.available2019-06-04T13:22:38Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/11323/4773
dc.description.abstractBackground Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.es_ES
dc.description.abstractAntecedentes Las estimaciones de población sustentan la investigación demográfica y epidemiológica y se utilizan para realizar un seguimiento del progreso Sobre numerosos indicadores internacionales de salud y desarrollo. Hasta la fecha, las estimaciones disponibles internacionalmente de La población y la fertilidad, aunque útiles, no se han producido con métodos transparentes y replicables y no se han producido. Utilizar estimaciones estandarizadas de mortalidad. Presentamos estimaciones de fertilidad de un solo año calendario y de un solo año de edad. y población por sexo con métodos estandarizados y replicables. Métodos Estimamos la población en 195 ubicaciones por año de edad y año calendario de 1950 a 2017 Con métodos estandarizados y replicables. Basamos las estimaciones en la ecuación de equilibrio demográfico, con Insumos de fertilidad, mortalidad, población y migración. Los datos de fertilidad provienen de 7817 años de localización de vital datos de registro, 429 encuestas que informan historiales completos de nacimientos y 977 encuestas y censos que informan el resumen Historias de nacimiento. Estimamos las tasas de fertilidad específicas por edad (ASFR, por sus siglas en inglés; el número anual de nacimientos vivos de mujeres de un grupo de edad especificado por 1000 mujeres en ese grupo de edad) mediante el uso de regresión del proceso gaussiano espaciotemporal y se utiliza los ASFR para estimar las tasas de fertilidad total (TFR, el número promedio de hijos que una mujer tendría si sobreviviera hasta el final de la edad reproductiva [edad 10–54 años] y experimentó en cada edad un conjunto particular de ASFR observado en el año de interés). Debido a la escasez de datos, se estimó la fertilidad entre las edades de 10 a 14 años y de 50 a 54 años. a partir de datos sobre fertilidad en mujeres de 15 a 19 años y de 45 a 49 años, mediante el uso de regresión lineal. Edad específica los datos de mortalidad provienen de las estimaciones de 2017 de la Carga Global de Enfermedades, Lesiones y Factores de Riesgo (GBD). Datos sobre la población provino de 1257 censos y 761 años de registro de población y se ajustaron para La subenumeración y la edad de los informes con métodos demográficos estándar. La migración se estimó con la Modelo de equilibrio demográfico bayesiano de GBD, después de incorporar información sobre la migración de refugiados al modelo anterior. Las estimaciones de población finales utilizaron el método de cohorte de componente de proyección de la población, con insumos de fertilidad, mortalidad, y datos de migración. La incertidumbre de la población se estimó mediante el uso de pruebas de validez predictiva fuera de la muestra. Con estos datos, estimamos las tendencias en la población por edad y sexo y en la fertilidad por edad entre 1950 y 2017 en 195 países y territorios.es_ES
dc.language.isoenges_ES
dc.publisherThe Lancetes_ES
dc.relation.ispartofhttps://doi.org/10.1016/S0140-6736(18)32278-5es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectDemográfica y epidemiológicaes_ES
dc.subjectIndicadores internacionales de salud y desarrolloes_ES
dc.subjectPoblación y la fertilidades_ES
dc.subjectDemographic and epidemiologicales_ES
dc.subjectInternational health and development indicatorses_ES
dc.subjectPopulation and fertilityes_ES
dc.titlePopulation and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017es_ES
dc.title.alternativePoblación y fecundidad por edad y sexo para 195 países y territorios, 1950-2017: un análisis sistemático para el Estudio de la carga mundial de la enfermedad 2017es_ES
dc.typeArticlees_ES
dcterms.references1 Thomas RK. Concepts, methods and practical applications in applied demography: an introductory textbook. Cham, Switzerland: Springer International Publishing, 2018. 2 WHO. World health statistics 2018: monitoring health for the SDGs. May 2, 2018. http://apps.who.int/iris/bitstream/handle/10665/ 272596/9789241565585-eng.pdf?ua=1 (accessed May 18, 2018). 3 WHO. Health in 2015: from MDGs to SDGs. December, 2015. http://www.who.int/gho/publications/mdgs-sdgs/en/ (accessed Oct 15, 2018). 4 UN Department of Economic and Social Affairs, Population Division. World population prospects: the 2017 revision, key findings and advance tables. June 21, 2017. https://esa.un.org/unpd/wpp/ Publications/Files/WPP2017_KeyFindings.pdf (accessed Feb 22, 2018). 5 UN Department of Economic and Social Affairs, Population Division. World population prospects: the 2017 revision, methodology of the united nations population estimates and projections. 2017. https://esa.un.org/unpd/wpp/publications/Files/ WPP2017_Methodology.pdf (accessed March 19, 2018). 6 Consejo Nacional de Población CONAPO. Proyecciones de la población 2010–2050. https://www.gob.mx/conapo/acciones-yprogramas/conciliacion-demografica-de-mexico-1950-2015-yproyecciones-de-la-poblacion-de-mexico-y-de-las-entidades-federativas2016-2050 Proyecciones (accessed March 14, 2018). 7 US Census Bureau. International data base. Dec 5, 2017. https://www.census.gov/programs-surveys/international-programs/ about/idb.html (accessed March 14, 2018). 8 Population Reference Bureau. 2017 World population data sheet with a special focus on youth. 2017. https://www.prb.org/wpcontent/uploads/2017/08/WPDS-2017.pdf (accessed June 21, 2018). 9 World Bank Group. Population estimates and projections. Sept 20, 2018. https://datacatalog.worldbank.org/dataset/ population-estimates-and-projections (accessed Oct 15, 2018). 10 European Comission Joint Research Centre. Demographic and human capital scenarios for the 21st century: 2018 assessment for 201 countries. April 19, 2018. http://pure.iiasa.ac.at/id/eprint/15226/1/ lutz_et_al_2018_demographic_and_human_capital.pdf (accessed Oct 15, 2018). 11 Gapminder. Gapminder tools. https://www.gapminder.org/ tools/#$chart-type=bubbles (accessed June 21, 2018). 12 Stevens GA, Alkema L, Black RE, et al. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. PLoS Med 2016; 13: e1002056. 13 GBD 2017 Mortality collaborators. Global, regional, and national age-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1684–735. 14 UN Population Division. World mortality report 2017. 2017. http://www.un.org/en/development/desa/population/publications/ mortality/world-mortality-cdrom-2017.shtml (accessed June 26, 2018). 15 GBD 2016 Mortality Collaborators. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1084–150. 16 Preston SH, Heuveline P, Guillot M. Demography: measuring and modelling population processes. Hoboken, NJ, USA: Wiley-Blackwell, 2000. 17 US Census Bureau. History: 1890. https://www.census.gov/history/ www/through_the_decades/index_of_questions/1890_1.html (accessed March 14, 2018). 18 UN. United Nations demographic yearbook 2016. 2017. https://unstats.un.org/unsd/demographic-social/products/dyb/ dybsets/2016.pdf (accessed Oct 15, 2018). 19 GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1345–422. 20 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1151–210. 21 UN. Transforming our world: the 2030 agenda for sustainable development. 2015. https://sustainabledevelopment.un.org/ content/documents/21252030%20Agenda%20for%20 Sustainable%20Development%20web.pdf (accessed Oct 15, 2018). 22 Goyer DS. The international population census bibliography, revision and update, 1945–1977. New York: Academic Press, 1980. 23 Ruggles S, Alexander JT, Genadek K, Goeken R, Schroeder MB, Sobek M. Integrated public use microdata series: version 5.0. Minneapolis, MN, USA: Minnesota Population Center, 2010. 24 UN Department of Economic and Social Affairs, Statistics Division. Population censuses’ datasets (1995–present). https://unstats.un. org/unsd/demographic-social/products/dyb/dybcensusdata.cshtml (accessed March 30, 2018). 25 UN Department of Economic and Social Affairs, Statistics Division. The census program, census dates from 1990 onward. May 27, 2016. https://unstats.un.org/unsd/demographic/sources/census/ censusdates.htm (accessed March 30, 2018). 26 UN. Member states. http://www.un.org/en/member-states/ (accessed June 21, 2018). 27 Zarkovich SS. The overcount in censuses of population. Jahrbucher Natl Stat 1989; 206: 606–09. 28 Ahonsi BA. Deliberate falsification and census data in Nigeria. Afr Aff 1988; 87: 553–62. 29 Kotzamanis B, Cantisani G, Dekker A, Logiadu-Didika D, Duquenne MN, Castori A. Documentation of the 2000 round of population and housing censures in the EU, EFTA and candidate countries: part III and annexes. Sept 21, 2004. https://ec.europa.eu/ eurostat/documents/3888793/5831893/KS-CC-04-003-EN. PDF/7264ad74-4719-404f-af3a-d2bf4cc3f71d?version=1.0 (accessed Oct 15, 2018). 30 Centro Centroamericano de Población. Evaluación demográfica del X Censo Nacional de Población de Costa Rica 2011 y de otras fuentes de información. March, 2013. https://ccp.ucr.ac.cr/observa/ CRnacional/pdf/Evaluacion%20censal%20FINAL%20marzo%20 2013.pdf (accessed Oct 15, 2018). 31 Cabella W, Filgueira F, Giusti A, Macadar D. Informe de la comisión técnica honoraria para la evaluacion del censo Uruguay 2011. Aug 7, 2012. http://www.ine.gub.uy/documents/10181/ 63830/Informe+de+la+Comisi%C3%B3n+T%C3%A9cnica+Honor aria/0624ef71-f00e-44ab-a69c-3eede9d127d5 (accessed Oct 15, 2018). 32 El Instituto Nacional de Estadística y Geografía. Resultados de la encuesta de posenumeración del Censo de Población y Vivienda 2010. 2012. https://celade.cepal.org/censosinfo/manuales/MX_ ResultEncPosEnumeracion_2010.pdf (accessed Oct 15, 2018). 33 de la Mora F. Paraguay: proyección de la población nacional, áreas urbana y rural por sexo y edad, 2000–2025: revisión 2015. October, 2015. http://www.dgeec.gov.py/Publicaciones/Biblioteca/ proyeccion%20nacional/Estimacion%20y%20proyeccion%20 Nacional.pdf (accessed Oct 15, 2018). 34 Bravo D, Larrañaga O, Millán I, Ruiz M, Zamorano F. Informe final, comisión externa, revisora del Censo 2012. Aug 7, 2013. http://www.cl.undp.org/content/chile/es/home/library/poverty/ informes_de_comisiones/informe-final--comision-externa-revisoradel-censo-2012.html (accessed Oct 15, 2018). 35 Lyons-Amos M, Stones T. Trends in Demographic and Health Survey data quality: an analysis of age heaping over time in 34 countries in Sub Saharan Africa between 1987 and 2015. BMC Res Notes 2017; 10: 760. 36 Pardeshi GS. Age heaping and accuracy of age data collected during a community survey in the Yavatmal district, Maharashtra. Indian J Community Med 2010; 35: 391–95. 37 Borkotoky K, Unisa S. Indicators to examine quality of large scale survey data: an example through District Level Household and Facility Survey. PLoS One 2014; 9: e90113. 38 National Research Council. Age misreporting and age-selective underenumeration: sources, patterns, and consequences for demographic analysis. 1981. https://www.nap.edu/catalog/19649/ age-misreporting-and-age-selective-underenumeration-sourcespatterns-and-consequences (accessed March 16, 2018). 39 Shryock HS, Siegel JS, Larmon EA. The methods and materials of demography, volume 2. Suitland, MD, USA: US Bureau of the Census, 1973. 40 Feeney G. A technique for correcting age distributions for heaping on multiples of five. Asian Pac Census Forum 1979; 5: 12–14. 41 Organisation for Economic Co-operation and Development. OECD data: working age population. July 2, 2018. http://data.oecd. org/pop/working-age-population.htm (accessed July 2, 2018). 42 World Bank. Population ages 15–64 (% of total). July 2, 2018. https://data.worldbank.org/indicator/SP.POP.1564.TO. ZS?view=chart (accessed July 2, 2018). 43 Hyman J. Accurate monotonicity preserving cubic interpolation. SIAM J Sci Stat Comput 1983; 4: 645–54. 44 Dougherty RL, Edelman AS, Hyman JM. Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math Comput 1989; 52: 471–94. 45 UN Department of Economic and Social Affairs, Population Division. International migration flows to and from selected countries: the 2015 revision. December, 2015. http://www.un.org/ en/development/desa/population/migration/data/empirical2/docs/ migflows2015documentation.pdf (accessed Feb 28, 2018). 46 Abel GJ. Estimates of global bilateral migration flows by gender between 1960 and 2015. Int Migr Rev 2017; published online Nov 24. DOI:10.1111/imre.12327. 47 Wheldon MC, Raftery AE, Clark SJ, Gerland P. Reconstructing past populations with uncertainty from fragmentary data. J Am Stat Assoc 2013; 108: 96–110. 48 Wheldon MC, Raftery AE, Clark SJ, Gerland P. Bayesian reconstruction of two-sex populations by age: estimating sex ratios at birth and sex ratios of mortality. J R Stat Soc Ser A Stat Soc 2015; 178: 977–1007. 49 Wheldon MC, Raftery AE, Clark SJ, Gerland P. Bayesian population reconstruction of female populations for less developed and more developed countries. Popul Stud 2016; 70: 21–37. 50 Kristensen K, Bell B, Skaug H, et al. TMB: template model builder: a general random effect tool inspired by ‘ADMB’. June 23, 2018. https://CRAN.R-project.org/package=TMB (accessed June 26, 2018). 51 Smallwood S, Chamberlain J. Replacement fertility, what has it been and what does it mean? Popul Trends 2005; 119: 16–27. 52 Keyfitz N. On the momentum of population growth. Demography 1971; 8: 71–80. 53 Bloom D, Canning D, Sevilla J. The demographic dividend: a new perspective on the economic consequences of population change. Santa Monica, CA, USA: RAND Corporation, 2003. 54 GBD 2016 SDG Collaborators. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 2017; 390: 1423–59. 55 Gauthier AH. The impact of family policies on fertility in industrialized countries: a review of the literature. Popul Res Policy Rev 2007; 26: 323–46. 56 Mcdonald P. Low fertility and the state: the efficacy of policy. Popul Dev Rev 2006; 32: 485–510. 57 Gauthier AH, Hatzius J. Family benefits and fertility: an econometric analysis. Popul Stud 1997; 51: 295–306. 58 Gavrilova NS, Gavrilov LA. Rapidly aging populations: Russia/eastern Europe. In: Uhlenberg P, ed. International handbook of population aging. New York: Springer, 2009: 113–31. 59 Woo J, Kwok T, Sze FKH, Yuan HJ. Ageing in China: health and social consequences and responses. Int J Epidemiol 2002; 31: 772–75. 60 Carone G, Costello D, Diez Guardia N, Mourre G, Przywara B, Salomäki A. The economic impact of ageing populations in the EU25 member states. Jan 5, 2006. https://papers.ssrn.com/ abstract=873872 (accessed March 28, 2018). 61 Morrow KM, Röger W. Economic and financial market consequences of ageing populations. 2003. https://ideas.repec. org/p/euf/ecopap/0182.html (accessed March 28, 2018). 62 Poterba JM. Retirement security in an aging population. Am Econ Rev 2014; 104: 1–30. 63 Beard JR, Bloom DE. Towards a comprehensive public health response to population ageing. Lancet 2015; 385: 658–61. 64 Bloom DE, Chatterji S, Kowal P, et al. Macroeconomic implications of population ageing and selected policy responses. Lancet 2015; 385: 649–57. 65 Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet 2009; 374: 1196–208. 66 McCurry J. Japan will be model for future super-ageing societies. Lancet 2015; 386: 1523. 67 Ekerdt DJ. Population retirement patterns. In: Uhlenberg P, ed. International handbook of population aging. New York: Springer, 2009: 471–91. 68 Aaron HJ, Burtless G. Closing the deficit: how much can later retirement help? Washington, DC, USA: Brookings Institution Press, 2013. 69 Clark RL, Ogawa N, Lee SH, Matsukura R. Older workers and national productivity in Japan. Popul Dev Rev 2008; 34: 257–74. 70 Humpel N, O’Loughlin K, Wells Y, Kendig H. Ageing baby boomers in Australia: evidence informing actions for better retirement. Aust J Soc Issues 2016; 44: 399–415. 71 Cobb-Clark DA, Stillman S. The retirement expectations of middle-aged Australians. Econ Rec 2009; 85: 146–63. 72 Hess M. Rising preferred retirement age in Europe: are Europe’s future pensioners adapting to pension system reforms? J Aging Soc Policy 2017; 29: 245–61. 73 Cetorelli V. The effect on fertility of the 2003–2011 war in Iraq. Popul Dev Rev 2014; 40: 581–604. 74 Cochrane SH. Fertility and education: what do we really know? 1979. http://documents.worldbank.org/curated/en/550621468765918708/ pdf/multi0page.pdf (accessed Oct 15, 2018). 75 McCrary J, Royer H. The effect of female education on fertility and infant health: evidence from school entry policies using exact date of birth. Am Econ Rev 2011; 101: 158–95. 76 Bongaarts J, Sinding S. Population policy in transition in the developing world. Science 2011; 333: 574–76. 77 Canning D, Schultz TP. The economic consequences of reproductive health and family planning. Lancet 2012; 380: 165–71. 78 Cleland J. The effects of improved survival on fertility: a reassessment. Popul Dev Rev 2001; 27: 60–92. 79 Angeles L. Demographic transitions: analyzing the effects of mortality on fertility. J Popul Econ 2010; 23: 99–120. 80 Azumi K. The mysterious drop in Japan’s birth rate. Trans-Action 1968; 5: 46–48. 81 Diebolt C, Haupert M. Handbook of cliometrics. New York: Springer, 2016. 82 Raftery AE, Alkema L, Gerland P. Bayesian population projections for the United Nations. Stat Sci Rev J Inst Math Stat 2014; 29: 58–68. 83 Raftery AE, Li N, Ševčíková H, Gerland P, Heilig GK. Bayesian probabilistic population projections for all countries. Proc Natl Acad Sci USA 2012; 109: 13915–21. 84 Azose JJ, Ševčíková H, Raftery AE. Probabilistic population projections with migration uncertainty. Proc Natl Acad Sci USA 2016; 113: 6460–65. 85 Ševčíková H, Raftery AE. bayesPop: probabilistic population projections. J Stat Softw 2016; 75. 86 Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet 2017; 390: 2171–82. 87 Osgood-Zimmerman A, Millear AI, Stubbs RW, et al. Mapping child growth failure in Africa between 2000 and 2015. Nature 2018; 555: 41–47es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess