Mostrar el registro sencillo del ítem

dc.contributor.authorGuzmán, Andresspa
dc.contributor.authorCabello Eras, Juan Joséspa
dc.contributor.authorSilva-Casarín, Rodolfospa
dc.contributor.authorBastidas-Arteaga, Emiliospa
dc.contributor.authorHorrillo-Caraballo, Joséspa
dc.contributor.authorRueda-Bayona, Juan Gabrielspa
dc.date.accessioned2019-06-28T18:28:45Z
dc.date.available2019-06-28T18:28:45Z
dc.date.issued2019-05-20
dc.identifier.issn0959-6526spa
dc.identifier.urihttp://hdl.handle.net/11323/4933spa
dc.description.abstractGlobal offshore wind technology shows increasing progress evidenced in the recent reports of wind power capacity, expectations of market expansion and international research projects. Colombia is privileged with several types of natural resources (e.g. wind, sun, water) but there is not a clear legal context to regulate sustainable and safe exploitation of the offshore wind energy considered non-conventional. The development of offshore wind technology in Colombia could attend the energy demand when the hydroelectric system presents low electricity generation during dry hydrological conditions and El Niño – South Oscillations events. This paper analyses international actions that have motivated different countries to establish strategies to reduce CO2, and their advances and challenges in implementing offshore wind technology. The review of the administrative framework of renewable energy in Colombia proved the lack of information for implementing offshore wind technology. Furthermore, the analysis of several studies of marine energies showed the need to increase the knowledge of offshore wind energy. The local applying projects to generate electricity from non-conventional renewable energies are not considering offshore wind energy projects. Hence, this research analysed wind speed and calculated wind power density at different height levels, what evidenced magnitudes and positive trends what justify to increase the research in offshore wind energy in Colombia. As a result, the present document compiles technical, economic, administrative and legal information of the renewable energies in Colombia that may be used for taking decisions of different stakeholders and evidences the potential implementing offshore wind farms in areas near to the Colombian Caribbean coast. Colombia has great resources to implement offshore wind energy technologies, reducing the dependence on fossil fuels and substituting other systems when they cannot guarantee the energy offer.
dc.language.isoeng
dc.publisherJournal of Cleaner Productionspa
dc.relation.ispartofhttps://doi.org/10.1016/j.jclepro.2019.02.174spa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectWind energyspa
dc.subjectOffshorespa
dc.subjectRenewable energyspa
dc.subjectColombiaspa
dc.subjectWind turbinesspa
dc.titleRenewables energies in Colombia and the opportunity for the offshore wind technologyspa
dc.typePre-Publicaciónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAhuja, D., Tatsutani, M., 2009. Sustainable energy for developing countries. SAPIENS Surv. Perspect. Integrating Environ. Soc. Álvarez Castañeda, W.F., Martínez Tejada, L.A., Alvarado Fajardo, A.C., 2013. Aplicación de la ecuación de Weibull para determinar potencial eólico en Tunja-Colombia, in: XX Simposio Peruano de energía solar - XXSPES. Presented at the XX Simposio Peruano de energía solar, APES, Asociación Peruana de Energía Solar y del Ambiente, Tacna, Perú, p. 8. Alvarez-Silva, O., Osorio, A.F., 2015. Salinity gradient energy potential in Colombia considering site specific constraints. Renew. Energy 74, 737–748. https://doi.org/10.1016/j.renene.2014.08.074 Andrade, C.A., Barton, E.D., 2000. Eddy development and motion in the Caribbean Sea. J. Geophys. Res. Oceans 105, 26191–26201. https://doi.org/10.1029/2000JC000300 Ávila, J.D., 2017. Realidades y necesidades del licenciamiento en los proyectos de generación por fuentes no convencionales, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Baker, R., Safarzade, E., 2009. Azerbaijan Alternative Energy Sector Analysis and Roadmap (No. RCDTA 7274). ADB, Asian Development Bank. Botero B, S., Isaza C, F., Valencia, A., 2010. Evaluation of methodologies for remunerating wind power’s reliability in Colombia. Renew. Sustain. Energy Rev. 14, 2049–2058. https://doi.org/10.1016/j.rser.2010.02.005 Breton, S.-P., Moe, G., 2009. Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Energy 34, 646–654. https://doi.org/10.1016/j.renene.2008.05.040 British Standard, 2006. Wind Turbines: Part 1 Design requirements BS EN 61400-1:2005. Burch, S., 2010. In pursuit of resilient, low carbon communities: An examination of barriers to action in three Canadian cities. Energy Policy 38, 7575–7585. https://doi.org/10.1016/j.enpol.2009.06.070 Castillo-Ramírez, A., Mejía-Giraldo, D., Molina-Castro, J.D., 2017. Fiscal incentives impact for RETs investments in Colombia. Energy Sources Part B Econ. Plan. Policy 12, 759–764. https://doi.org/10.1080/15567249.2016.1276648 Castro Ferreira, G., 2017. Esquema regulatorio, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Riohacha, La Guajira, Colombia. Cheng, P.W., 2002. A reliability based design methodology for extreme responses of offshore wind turbines. DUWIND Delft University Wind Energy Research Institute, Delft, The Netherlands. CIOH, 2010. Climatología de los principales puertos del caribe colombiano - Riohacha [WWW Document]. URL https://www.cioh.org.co/meteorologia/Climatologia/ResumenRiohacha1.php (accessed 1.20.19). Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D., de Palacio-Rodríguez, C., 2016. Offshore wind energy: A review of the current status, challenges and future development in Spain. Renew. Sustain. Energy Rev. 64, 1–18. https://doi.org/10.1016/j.rser.2016.05.087 Contreras, J., Rodríguez, Y.E., 2016. Incentives for wind power investment in Colombia. Renew. Energy 87, 279–288. https://doi.org/10.1016/j.renene.2015.10.018 CREG, 2018a. Comisión de Regulación de Energía y Gas - CREG - Mission and Vision [WWW Document]. URL http://www.creg.gov.co/index.php/en/2016-12-19-19-29-04/who-arewe/mission-and-vision (accessed 3.11.18). CREG, 2018b. Resolución 015 de 2018 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d57726 a90525822900064dac/$FILE/Creg015-2018.pdf (accessed 3.10.18). CREG, 2017. Circular N°013 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/0f15fddec93f80 ef052580eb005239dc?OpenDocument (accessed 3.11.18). CREG, 2016a. Resolución 243 de 2016 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/82606579833fa 7d3052580c0004f7b6a/$FILE/Creg243-2016.pdf (accessed 3.11.18). CREG, 2016b. Resolución 026 de 2016 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/fbb3d37107dac 62d05257f70004c5277?OpenDocument (accessed 3.11.18). CREG, 2016c. Alternativas para la integración de fuentes no convencionales de energía renovable (FNCER) al parque generador. CREG, 2015a. Resolución 024 de 2015 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/67513914c35d6 b8c05257e2d007cf0b0/$FILE/Creg024-2015.pdf (accessed 3.11.18). CREG, 2015b. Resolución 061 de 2015 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/a4170681d70b3 2f905257e4a006d8d5a/$FILE/Creg061-2015.pdf (accessed 3.11.18). CREG, 2014a. Resolución 132 de 2014 [WWW Document]. URL http://www.suinjuriscol.gov.co/viewDocument.asp?id=4019874 (accessed 3.11.18). CREG, 2014b. Decreto 2469 de 2014 [WWW Document]. URL http://www.suinjuriscol.gov.co/viewDocument.asp?id=1454003 (accessed 3.11.18). CREG, 2013. Resolución 153 de 2013 [WWW Document]. URL http://www.suinjuriscol.gov.co/clp/contenidos.dll/Resolucion/4020552?fn=documentframe.htm$f=templates$3.0 (accessed 3.11.18). CREG, 2010. Resolución 005 de 2010 [WWW Document]. URL http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2010-Creg005-2010 (accessed 3.15.18). CREG, 1996. Resolución 085 de 1996 [WWW Document]. URL http://www.suinjuriscol.gov.co/viewDocument.asp?id=4016388 Devis-Morales, A., Montoya-Sánchez, R.A., Bernal, G., Osorio, A.F., 2017. Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Appl. Ocean Res. 69, 10– 26. https://doi.org/10.1016/j.apor.2017.09.012 Devis-Morales, A., Montoya-Sánchez, R.A., Osorio, A.F., Otero-Díaz, L.J., 2014. Ocean thermal energy resources in Colombia. Renew. Energy 66, 759–769. https://doi.org/10.1016/j.renene.2014.01.010 Dinero, 2015. El fenómeno de El Niño revive la posibilidad de un apagón en Colombia. Dinero -Carátula. Dudhia, J., Gill, D., Manning, K., Wang, W., Bruyere, C., Kelly, S., Lackey, K., 2004. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. Edsand, H.-E., 2017. Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technol. Soc. 49, 1–15. https://doi.org/10.1016/j.techsoc.2017.01.002 Elliott, D., Aspliden, C., Gower, G., Holladay, C., Schwartz, M., 1987. Wind Energy Resource Assessment of the Caribbean and Central America (No. PNL-6234, 971424). U.S. Department of Energy, Richland, Washington. https://doi.org/10.2172/971424 ESMAP, 2010. Review of policy framework for increased reliance on wind energy in Colombia. Energy Unit, Sustainable Development Department, The World Bank. Flavin, C., Gonzalez, M., Majano, A.M., Ochs, A., da Rocha, M., Tagwerker, P., 2014. Study on the Development of the Renewable Energy Market in Latin America and the Caribbean (Working paper No. OVE/WP-02/14, IDB RPF #14-002). Inter-American Development Bank. Franco-Cardona, C.J., Castañeda-Riascos, M., Valencia-Arias, A., Bermúdez-Hernández, J., 2015. The energy trilemma in the policy design of the electricity market. DYNA 82, 160–169. https://doi.org/10.15446/dyna.v82n194.48595 Froese, M., 2018. Offshore wind market expected to exceed $60 billion by 2024 [WWW Document]. Wind. Eng. Dev. URL https://www.windpowerengineering.com/business-newsprojects/uncategorized/offshore-wind-energy-market-expected-to-exceed-usd-60-billion-by2024/ (accessed 12.5.18). Gaona, E.E., Trujillo, C.L., Guacaneme, J.A., 2015. Rural microgrids and its potential application in Colombia. Renew. Sustain. Energy Rev. 51, 125–137. https://doi.org/10.1016/j.rser.2015.04.176 Gatzert, N., Kosub, T., 2016. Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. Renew. Sustain. Energy Rev. 60, 982–998. https://doi.org/10.1016/j.rser.2016.01.103 GE Renewable Energy, 2018. World’s Largest Offshore Wind Turbine [WWW Document]. Haliade-X Offshore Wind Turbine Platf. URL https://www.ge.com/renewableenergy/windenergy/turbines/haliade-x-offshore-turbine (accessed 12.5.18). Green, R., Vasilakos, N., 2011. The economics of offshore wind. Energy Policy, Special Section on Offshore wind power planning, economics and environment 39, 496–502. https://doi.org/10.1016/j.enpol.2010.10.011 GWEC, 2016. Global Wind Report - Annual Market Update 2016. GWEC, Global Wind Energy Council. Ho, A., Mbistrova, A., Corbetta, G., 2016. The European offshore wind industry - key trends and statistics 2015. EWEA, The European Wind Energy Association. Hoogwijk, M., Graus, W., 2008. Global potential of renewable energy sources: a literature assessment (Background report No. PECSNL072975). ECOFIS. IDEAM, 2018. Atlas Interactivo - Vientos - IDEAM [WWW Document]. URL http://atlas.ideam.gov.co/visorAtlasVientos.html (accessed 3.12.18). IPSE, 2018. IPSE - Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas [WWW Document]. IPSE. URL http://www.ipse.gov.co/ (accessed 3.15.18). IRENA, 2014. Pan-Arab Renewable Energy Strategy 2030, Roadmap of Actions for Implementation. IRENA, International Renewable Energy Agency. Jimenez, M., Franco, C.J., Dyner, I., 2016. Diffusion of renewable energy technologies: The need for policy in Colombia. Energy 111, 818–829. https://doi.org/10.1016/j.energy.2016.06.051 Kaplan, Y.A., 2015. Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renew. Sustain. Energy Rev. 43, 562–568. https://doi.org/10.1016/j.rser.2014.11.027 Kota, S., Bayne, S.B., Nimmagadda, S., 2015. Offshore wind energy: A comparative analysis of UK, USA and India. Renew. Sustain. Energy Rev. 41, 685–694. https://doi.org/10.1016/j.rser.2014.08.080 Lee, M.E., Kim, G., Jeong, S.-T., Ko, D.H., Kang, K.S., 2013. Assessment of offshore wind energy at Younggwang in Korea. Renew. Sustain. Energy Rev. 21, 131–141. https://doi.org/10.1016/j.rser.2012.12.059 Mejía, J.M., Chejne, F., Smith, R., Rodríguez, L.F., Fernández, O., Dyner, I., 2006. Simulation of wind energy output at Guajira, Colombia. Renew. Energy 31, 383–399. https://doi.org/10.1016/j.renene.2005.03.014 MEM, 2011. Moroccan project of wind energy 2.000 MW [WWW Document]. URL http://www.mem.gov.ma/SitePages/GrandChantiersEn/DEREEWindEnergy.aspx (accessed 3.15.18). Meyer, L., Pachauri, R.K., 2015. Climate Change 2014: Synthesis Report. IPCC - Intergovernmental Panel on Climate Change, Geneva, Switzerland. MINMINAS, 2018. Misión y visión- Ministerio de Minas y Energía [WWW Document]. URL https://www.minminas.gov.co/mision-y-vision (accessed 3.15.18). MINMINAS, 2017. Decreto 348 de 2017 [WWW Document]. URL http://es.presidencia.gov.co/normativa/normativa/DECRETO%20348%20DEL%2001%20DE%2 0MARZO%20DE%202017.pdf (accessed 3.11.18). Murillo, L.G., 2017. La paz está en nuestra naturaleza, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Riohacha, La Guajira, Colombia. Nesamalar, J.J.D., Venkatesh, P., Raja, S.C., 2017. The drive of renewable energy in Tamilnadu: Status, barriers and future prospect. Renew. Sustain. Energy Rev. 73, 115–124. https://doi.org/10.1016/j.rser.2017.01.123 Netherlands Enterprise Agency, 2015. Offshore wind energy in the Netherlands. Netherlands Enterprise Agency, Utrecht, Netherlands. NOAA, 2016. NCEP North American Regional Reanalysis: NARR [WWW Document]. URL https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html NRF, 2012. Renewable energy in Morocco [WWW Document]. URL http://www.nortonrosefulbright.com/knowledge/publications/66419/renewable-energy-inmorocco (accessed 3.15.18). Olaya, Y., Arango-Aramburo, S., Larsen, E.R., 2016. How capacity mechanisms drive technology choice in power generation: The case of Colombia. Renew. Sustain. Energy Rev. 56, 563–571. https://doi.org/10.1016/j.rser.2015.11.065 Ordóñez, G., Osma, G., Vergara, P., Rey, J., 2014. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia. IOP Conf. Ser. Mater. Sci. Eng. 59, 012004. https://doi.org/10.1088/1757-899X/59/1/012004 Ortega-Arango, S., 2010. Estudio de aprovechamiento de la energía del oleaje en Isla Fuerte (Caribe colombiano) (Master Thesis). Universidad Nacional de Colombia, Medellín, Colombia. Ortiz, R.P., 2017. Las energías renovables en la matriz energética de Colombia, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Osorio, A.F., Ortega, S., Arango-Aramburo, S., 2016. Assessment of the marine power potential in Colombia. Renew. Sustain. Energy Rev. 53, 966–977. https://doi.org/10.1016/j.rser.2015.09.057 Pabón Hernández, S.M., 2018. Geospatial assessment of the wind energy for an onshore project in the Caribbean region of Colombia, in: 7th Academic International Workshop Advances in Cleaner Production “Cleaner Production for Achieving Sustainable Develpment Goals.” Presented at the 7th International workshop advances in cleaner production, Barranquilla, Colombia, p. 197. Perdomo Delgado, D.A., Jaimes Herrera, M.T., Almeira, J.E., 2014. La energía eólica como energía alternativa para el futuro de Colombia. Centauro 6, 111–120. Pereira Blanco, M.J., 2015. Relación entre energía, medio ambiente y desarrollo económico a partir del análisis jurídico de las energías renovables en Colombia. Saber Cienc. Lib. 10, 35–60. https://doi.org/10.18041/2382-3240/saber.2015v10n1.868 Pérez Bedoya, E., Osorio Osorio, J.A., 2002. Energía, pobreza y deterioro ecológico en Colombia: introducción a las energías alternativas. Estrategias y Desarrollo. Pérez-Denicia, E., Fernández-Luqueño, F., Vilariño-Ayala, D., Manuel Montaño-Zetina, L., Alfonso Maldonado-López, L., 2017. Renewable energy sources for electricity generation in Mexico: A review. Renew. Sustain. Energy Rev. 78, 597–613. https://doi.org/10.1016/j.rser.2017.05.009 Perveen, R., Kishor, N., Mohanty, S.R., 2014. Off-shore wind farm development: Present status and challenges. Renew. Sustain. Energy Rev. 29, 780–792. https://doi.org/10.1016/j.rser.2013.08.108 Prias Caicedo, O.F., 2010a. Programa de uso racional y eficiente de energía y fuentes no convencionales - PROURE, Plan de acción 2010-2015. MINMINAS - Ministerio de Minas y Energía, Bogotá, Colombia. Prias Caicedo, O.F., 2010b. Programa de uso racional y eficiente de energía y fuentes no convencionales - PROURE, Plan de acción 2010-2015. MINMINAS - Ministerio de Minas y Energía, Bogotá, Colombia. Realpe Jimenez, A., Diazgranados, J.A., Acevedo Morantes, M.T., 2012. Electricity generation and wind potential assessment in regions of Colombia. DYNA 79, 116–122. Renewables First, 2018. What is the wind class of a wind turbine? Renew. First - Hydro Wind Co. URL https://www.renewablesfirst.co.uk/windpower/windpower-learning-centre/what-is-thewind-class-of-a-wind-turbine/ (accessed 12.5.18). Resch, G., Panzer, C., Ortner, A., 2014. 2030 RES targets for Europe - a brief pre-assessment of feasibility and impacts. Vienna University of Technology, Institute of Energy systems and Electric Drives, Energy Economics Group (EEG), Vienna, Austria. Ricaurte-Villota, C., Bastidas Salamanca, M.L. (Eds.), 2017. Regionalización oceanográfica: una visión dinámica del caribe, Publicaciones Especiales de INVEMAR. INVEMAR, Santa Marta, D.T.C.H., Colombia. Richard, C., 2018. UK and China to open offshore wind research centre [WWW Document]. URL https://www.windpoweroffshore.com/article/1491968 (accessed 12.6.18). Richard, C., 2017. Offshore capacity grows by 10% in H1 2017 [WWW Document]. URL https://www.windpoweroffshore.com/article/1443566 (accessed 12.5.18). Rodrigues, S., Restrepo, C., Kontos, E., Teixeira Pinto, R., Bauer, P., 2015. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 49, 1114–1135. https://doi.org/10.1016/j.rser.2015.04.092 Román, R., Cansino, J.M., Rodas, J.A., 2018. Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications. Renew. Energy 116, 402–411. https://doi.org/10.1016/j.renene.2017.09.016 Rueda Bayona, J.G., 2017. Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore (PhD Thesis). Universidad del Norte, Barranquilla, Colombia. Rueda Bayona, J.G., 2015. Caracterización hidromecánica de plataformas marinas en aguas intermedias sometidas a cargas de oleaje y corriente mediante modelación numérica. Rueda-Bayona, J., Elles, C., Sánchez, E., González, Á., Rivillas, D.G., 2016. Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster kmedias. Rev. Tecnura 20, 55–68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04 Rueda-Bayona, J.G., Osorio-Arias, A.F., Guzmán, A., Rivillas-Ospina, G., 2019. Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering. J. Waterw. Port Coast. Ocean Eng. 145, 05018010(1–16). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000499 Ruiz, B.J., Rodríguez-Padilla, V., 2006. Renewable energy sources in the Colombian energy policy, analysis and perspectives. Energy Policy 34, 3684–3690. https://doi.org/10.1016/j.enpol.2005.08.007 SEI, 2002. Cost Benefit Analysis of Government support options for offshore wind energy. SEI, Sustainable Energy Ireland, Ireland. Senado de la República de Colombia, 2015. Ley 1753 de 2015 [WWW Document]. URL http://www.secretariasenado.gov.co/senado/basedoc/ley_1753_2015.html (accessed 3.16.18). Senado de la República de Colombia, 2014. Ley 1715 de 2014 [WWW Document]. URL http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html (accessed 3.16.18). Senado de la República de Colombia, 2001. Ley 697 de 2001 [WWW Document]. URL http://www2.igac.gov.co/igac_web/normograma_files/LEY6972001.pdf (accessed 12.5.18). Statista, 2018. Cumulative offshore wind capacity by country 2017 | Statistic [WWW Document]. Statista. URL https://www.statista.com/statistics/258946/cumulative-offshore-wind-powercapacity-by-country/ (accessed 12.5.18). Superintendencia de Industria y Comercio, 2018. Superintendencia de Industria y Comercio - República de Colombia [WWW Document]. URL http://www.sic.gov.co/mision-y-vision (accessed 3.15.18). Superservicios, 2018. Superservicios - Superintendencia de Servicios Públicos Domiciliarios - República de Colombia [WWW Document]. URL http://www.superservicios.gov.co/Institucional (accessed 3.15.18). Syndicat des énergies renouvables, 2013. Une feuille de route pour l’éolien en mer: 15000 MW en 2030. Syndicat des énergies renouvables, Paris. United Nations Climate Change, 2017. The Paris Agreement [WWW Document]. URL https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed 12.2.18). UPME, 2018. UPME - Unidad de Planeación Minero Energética [WWW Document]. URL http://www1.upme.gov.co/Entornoinstitucional/NuestraEntidad/Paginas/QuienesSomos.aspx (accessed 3.15.18). UPME, 2016a. Comunicado de Prensa No 002-2016 [WWW Document]. URL http://www.upme.gov.co/Comunicados/2016/Comunicado_UPME_No02-2016.pdf (accessed 3.15.18). UPME, 2016b. Plan indicativo de expansión de cobertura de energía eléctrica, PIEC 2016-2020 [WWW Document]. URL http://www.upme.gov.co/Siel/Siel/Portals/0/Piec/PIEC_2016- 2020_PublicarDic202016.pdf UPME, 2015a. Integración de las energías renovables no convencionales en Colombia. UPME, Unidad de Planeación Minero Energética, Bogotá, Colombia. UPME, 2015b. Plan de expansión de referencia generación - transmisión 2015 - 2029 [WWW Document]. URL http://www1.upme.gov.co/Documents/Plan-Expansion-2015- 2029/Plan_GT_2015-2029_VF_22-12-2015.pdf UPME, 2015c. Resolución 281 de 2015 [WWW Document]. URL https://www.minminas.gov.co/documents/10180/18995913/res_281.pdf/6077cb6c-dabc43fc-8403-cb1c5e832b37 (accessed 3.15.18). U.S. Department of Energy, 2008. 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply (No. DOE/GO--102008-2567, 1216732). U.S. Department of Energy, United States of America. https://doi.org/10.2172/1216732 Valencia, J., 2017. Hoja de ruta para la incorporación de energías renovables en Colombia, in: 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética. Presented at the 1er encuentro internacional de energías renovables, viabilizando la diversificación de la matriz energética, Riohacha, La Guajira, Colombia. Vargas, J.A., 2017. Perspectiva mundial de las energías renovables. Encuentro Int. Energ. Renov. 29– 30. Vergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., Benoit, P., 2013. Wind Energy in Colombia: A Framework for Market Entry. World Bank Publications. Verhees, B., Raven, R., Kern, F., Smith, A., 2015. The role of policy in shielding, nurturing and enabling offshore wind in The Netherlands (1973-2013). Renew. Sustain. Energy Rev. 47, 816–829. https://doi.org/10.1016/j.rser.2015.02.036 Vidadili, N., Suleymanov, E., Bulut, C., Mahmudlu, C., 2017. Transition to renewable energy and sustainable energy development in Azerbaijan. Renew. Sustain. Energy Rev. 80, 1153–1161. https://doi.org/10.1016/j.rser.2017.05.168 VLIZ, 2015. Mermaid project [WWW Document]. Innov. Multi-Purp. Offshore Platf. Planing Des. Oper. URL http://www.vliz.be/projects/mermaidproject/ (accessed 3.15.18). Weaver, T., 2012. Financial appraisal of operational offshore wind energy projects. Renew. Sustain. Energy Rev. 16, 5110–5120. https://doi.org/10.1016/j.rser.2012.05.003 White, F.M., 2002. Fluid Mechanics-5th. McGraw-HillNew York. https://doi.org/10.1111/j.1549- 8719.2009.00016.x.Mechanobiology Wind Europe, 2018. Wind in power 2017, Annual combined onshore and offshore wind energy statistics. Wind Europe. WISE, 2012. Action plan for comprehensive renewable energy development in Tamil Nadu. WISE, World Institute of Sustainable Energy, Pune, India. World Energy Council, 2016. World Energy Trilemma Index 2016, World Energy Council. ed. World Energy Council, London, United Kingdom. World Energy Council, 2014. Colombia avanza 8 puestos en el ranking global del Consejo Mundial de Energía [WWW Document]. URL https://www.worldenergy.org/news-and-media/pressreleases/colombia-avanza-8-puestos-en-el-ranking-global-del-consejo-mundial-de-energia/ (accessed 3.15.18). Yuan, X., Zuo, J., Huisingh, D., 2015. Social acceptance of wind power : a case study of Shandong Province ,. J. Clean. Prod. 92, 168–178. https://doi.org/10.1016/j.jclepro.2014.12.097 Zhang, D., Wang, J., Lin, Y., Si, Y., Huang, C., Yang, J., Huang, B., Li, W., 2017. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 76, 865–871. https://doi.org/10.1016/j.rser.2017.03.023 Zhang, J., Zhang, Jiwei, Cai, L., Ma, L., 2017. Energy performance of wind power in China: A comparison among inland, coastal and offshore wind farms. J. Clean. Prod. 143, 836–842. https://doi.org/10.1016/j.jclepro.2016.12.040 Zuluaga, M.M., Dyner, I., 2007. Incentives for renewable energy in reformed Latin-American electricity markets: the Colombian case. J. Clean. Prod. 15, 153–162. https://doi.org/10.1016/j.jclepro.2005.12.014spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal