Show simple item record

dc.creatorGallego Cartagena, Euler
dc.creatorCastillo-Ramírez, Margarita
dc.creatorMartínez-Burgos, Walter
dc.date.accessioned2019-08-09T15:23:21Z
dc.date.available2019-08-09T15:23:21Z
dc.date.issued2019-07-23
dc.identifier.issn1319-562X
dc.identifier.urihttp://hdl.handle.net/11323/5138
dc.description.abstractThe objective was evaluate the carotenogenic activity ofDunaliella salinaisolated from the artificial saltflats of municipality of Manaure (Department of La Guajira, Colombia). Two experimental testings weredesigned, in triplicate, to induce the reversibility of the cell tonality depending on the culture conditions.In the first test (A), to induce the reversibility from green to red tonality inD. salinacells, these were cul-tured in J/1 medium at a concentration of 4.0 M NaCl, 390mmol m 2s 1, 0.50 mM KNO3. In the second test(B), to induce the reversibility from red to green cell tonality, the cultures were maintained in J/1 medium1 M NaCl, 190mmol m 2s 1, 5.0 mM KNO3and pH 8.2. The population growth was evaluated by cell countand the pigment content was performed by spectrophotometric techniques. It was found that in both teststhe culture conditions influenced the population growth and the pigments production ofD. salina. Therewas a significant difference between the mean values of total carotenoids in the test A with 9.67 ± 0.19lg/ml and second test with 1.54 ± 0.08lg/ml at a significance level of p < 0.05. It was demonstrated thatthe culture conditions of test A induce the production of lipophilic antioxidants, among these carotenoids.The knowledge of the stressful conditions for the production of carotenoids fromD. salinaisolated fromartificial saline of Manaure opens a field in implementation of this biotic resource for biotechnological pur-poses, production of new antibiotics, nutraceuticals and/or biofuels production.spa
dc.language.isoengspa
dc.publisherSaudi Journal of Biological Sciencesspa
dc.relation.ispartofhttps://doi.org/10.1016/j.sjbs.2019.07.010spa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectDunaliella salinaspa
dc.subjectCarotenoidesspa
dc.subjectStressful conditionsspa
dc.subjectBiotechnological purposesspa
dc.titleEffect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunaliella salinaspa
dc.typeArticlespa
dcterms.referencesAndersen and Kawachi, 2005 R.A. Andersen, M. Kawachi Traditional microalgae isolation techniques Algal Cult. Tech., 83 (2005), pp. 90-101 CrossRefView Record in ScopusGoogle Scholar Azachi et al., 2002 M. Azachi, A. Sadka, M. Fisher, P. Goldshlag, I. Gokhman, A. Zamir Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina Plant Physiol., 129 (2002), pp. 1320-1329 CrossRefView Record in ScopusGoogle Scholar Ben-Amotz and Avron, 1983 A. Ben-Amotz, M. Avron On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil Plant Physiol., 7 (1983), pp. 593-597 CrossRefView Record in ScopusGoogle Scholar Benemann, 2013 J. Benemann Microalgae for biofuels and animal feeds Energies, 6 (2013), pp. 5869-5886 CrossRefView Record in ScopusGoogle Scholar Bhattacharjee, 2016 M. Bhattacharjee Pharmaceutically valuable bioactive compounds of algae Asian J. Pharm. Clin. Res., 7 (2016), pp. 43-47 CrossRefView Record in ScopusGoogle Scholar Borowitzka, 1988 M. Borowitzka Algal growth media and sources of algal cultures M.A. Borowitzka, L.J. Borowitzka (Eds.), Microalgal Biotechnology, Cambridge University Press, Cambridge (1988), pp. 456-465 Google Scholar Borowitzka and Borowitzka, 1988 M. Borowitzka, L. Borowitzka Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina T. Stadler, J. Mollion, M. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Eds.), Algal Biotechnology, Elsevier Applied Science, Barking, UK (1988), pp. 371-381 View Record in ScopusGoogle Scholar Borowitzka, 1995 M. Borowitzka Microalgae as sources of pharmaceuticals and other biologically active compounds J. Appl. Phycol., 7 (1995), pp. 3-15 CrossRefView Record in ScopusGoogle Scholar Chen and Jiang, 2009 H. Chen, J. Jiang Osmotic responses of Dunaliella to the changes of salinity J. Cell Physiol., 219 (2009), pp. 251-258 CrossRefView Record in ScopusGoogle Scholar Chisti, 2007 Y. Chisti Biodiesel from microalgae Biotechnol. Adv., 25 (2007), pp. 294-306 ArticleDownload PDFView Record in ScopusGoogle Scholar Cifuentes et al., 1996 A. Cifuentes, M. Gonzalez, O. Parra, M. Zúñiga Cultivo de cepas de Dunaliella salina (Teodoresco 1905) en diferentes medios bajo condiciones de laboratorio Rev. Chil. Hist. Nat., 69 (1996), pp. 105-112 View Record in ScopusGoogle Scholar Cowan and Rose, 1991 A. Cowan, P. Rose Abscisic acid metabolism in salt-stressed cells of Dunaliella salina: possible interrelationship with β-carotene accumulation Plant Physiol., 97 (1991), pp. 798-803 CrossRefView Record in ScopusGoogle Scholar Cowan and Rose, 1992 A. Cowan, P. Rose Horne L. Dunaliella salina: a model system for studying the response of plant cells to stress J. Exp. Bot., 43 (1992), pp. 1535-1547 CrossRefView Record in ScopusGoogle Scholar Deng and Coleman, 1999 M. Deng, J. Coleman Ethanol synthesis by genetic engineering in cyanobacteria Appl. Environ. Microb., 65 (1999), pp. 523-528 View Record in ScopusGoogle Scholar Dhanam and Dhandayuthapani, 2013 D. Dhanam, K. Dhandayuthapani Optimization of β-carotene production by marine microalga Dunaliella salina Int. J. Curr. Microbiol. App. Sci., 3 (2013), pp. 37-43 View Record in ScopusGoogle Scholar Dipak and Lele, 2005 P. Dipak, S. Lele Carotenoid production from microalga Dunaliella salina Indian J. Biotechnol., 4 (2005), pp. 476-483 Google Scholar El-Baky et al., 2004 A. El-Baky, F. El-Baz, G. El-Baroty Production of antioxidant by the green alga Dunaliella salina Int. J. Agric. Biol., 6 (2004), pp. 49-57 Google Scholar Emtyazjoo et al., 2012 M. Emtyazjoo, Z. Moghadasi, M. Rabbani, M. Emtyazjoo, S. Samadi, N. Mossaffa Anticancer effect of Dunaliella salina under stress and normal conditions against skin carcinoma cell line A431 in vitro Iran. J. Fish Sci., 11 (2012), pp. 283-293 Google Scholar Eriksen, 2008 N. Eriksen The technology of microalgal culturing Biotechnol. Lett., 30 (2008), pp. 1525-1536 CrossRefView Record in ScopusGoogle Scholar Ettl, 1983 H. Ettl Taxonomische bemerkungen zu den Phytomonadina Nova Hedwigia, 35 (1983), pp. 731-736 View Record in ScopusGoogle Scholar Faheed and Fattah, 2008 F. Faheed, Z. Fattah Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of Lettus plant J. Agr. Soc. Sci., 4 (2008), pp. 165-169 View Record in ScopusGoogle Scholar Fazeli et al., 2006 M. Fazeli, H. Tofighi, N. Samadi, H. Jamalifar, A. Fazeli Carotenoids accumulation by Dunaliella tertiolecta (Lake Urmia isolate) and Dunaliella salina (CCAP 19/18 & WT) under stress conditions DARU, 14 (2006), pp. 146-150 View Record in ScopusGoogle Scholar Fu et al., 2014 W. Fu, G. Paglia, M. Magnúsdóttir, E. Steinarsdóttir, S. Gudmundsson, B. Palsson, S. Brynjólfsson, O. Andrésson, S. Brynjólfsson Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina Microb. Cell Fact., 13 (2014), pp. 1-9 View Record in ScopusGoogle Scholar Gallego et al., 2013 E. Gallego, L. Manjarrez, L. Herrera Effect of subbituminous coal on growth and pigments concentration of Dunaliella salina (Teodoresco, 1905) cultivated in photobioreactor multiple chambers oscillating Intropica, 8 (2013), pp. 69-78 View Record in ScopusGoogle Scholar Gimpel et al., 2013 J. Gimpel, E. Specht, D. Georgianna, S. Mayfield Advances in microalgae engineering and synthetic biology applications for biofuel production Curr. Opin. Chem. Biol., 17 (2013), pp. 489-495 ArticleDownload PDFView Record in ScopusGoogle Scholar Ginzburg, 1987 M. Ginzburg Dunaliella: a green alga adapted to salt Adv. Bot. Res., 14 (1987), pp. 93-183 Google Scholar Giordano and Bowes, 1997 M. Giordano, G. Bowes Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth Plant Physiol., 115 (1997), pp. 1049-1056 CrossRefView Record in ScopusGoogle Scholar Gómez and González, 2005 P. Gómez, M. González The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions Biol. Res., 38 (2005), pp. 151-162 View Record in ScopusGoogle Scholar Guedes et al., 2011 A. Guedes, H. Amaro, F. Malcata Microalgae as sources of carotenoids Mar. Drugs, 9 (2011), pp. 625-644 CrossRefView Record in ScopusGoogle Scholar Guillard, 1973 R. Guillard Division rates J.R. Stein (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements, Cambridge University Press, Cambridge (1973), pp. 34-45 Google Scholar Hallmann, 2007 A. Hallmann Algal transgenics and biotechnology Transgenic Plant J., 1 (2007), pp. 81-98 View Record in ScopusGoogle Scholar Hemaiswarya et al., 2011 S. Hemaiswarya, R. Raja, R. Kumar, V. Ganesan, C. Anbazhagan Microalgae: a sustainable feed source for aquaculture World J. Microb. Biot., 27 (2011), pp. 1737-1746 CrossRefView Record in ScopusGoogle Scholar Jeffrey and Humphrey, 1975 S. Jeffrey, G. Humphrey New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton Biochem. Physiol. Pflanzen., 167 (1975), pp. 191-194 ArticleDownload PDFView Record in ScopusGoogle Scholar Khoyi et al., 2009 Z. Khoyi, J. Seyfabadi, Z. Ramezanpour Effects of light intensity and photoperiod on the growth rate, chlorophyll a and β-carotene of freshwater green microalga Chlorella vulgaris. Comparative biochemistry and physiology Part A Mol. Integr. Physiol., 2 (2009), pp. 210-215 Google Scholar Kleinegris et al., 2011 D. Kleinegris, M. Janssen, W. Brandenburg, R. Wijffels Continuous production of carotenoids from Dunaliella salina Enzyme Microb. Tech., 48 (2011), pp. 253-259 ArticleDownload PDFView Record in ScopusGoogle Scholar Kumar, 2014 M. Kumar Harvesting of valuable eno-and exo-metabolites form cyanobacteria: a potential source Asian J. Pharm. Clin. Res., 7 (2014), pp. 24-28 CrossRefView Record in ScopusGoogle Scholar Lamers et al., 2010 P.P. Lamers, C.C. van de Laak, P.S. Kaasenbrood, J. Lorier, M. Janssen, R.C. De Vos, R.H. Wijffels Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina Biotechnol Bioeng., 106 (2010), pp. 638-648 CrossRefView Record in ScopusGoogle Scholar Lamers et al., 2008 P. Lamers, M. Janssen, R. De Vos, R. Bino, R. Wijffels Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications Trends Biotechnol., 26 (2008), pp. 631-638 ArticleDownload PDFView Record in ScopusGoogle Scholar Loeblich, 1982 L. Loeblich Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta) J. Mar. Biol. Assoc. UK, 62 (1982), pp. 493-508 CrossRefView Record in ScopusGoogle Scholar Lopez-Elijah et al., 2013 J. Lopez-Elijah, D. Fimbres-Olivarría, L. Medina-Juárez, A. Miranda-Baeza, L. Martínez-Córdova, D. Molina-Quijada Producción de biomasa y carotenoides de Dunaliella tertiolecta en medios limitados en nitrógeno Phyton, 82 (2013), pp. 23-30 Google Scholar Mishra and Jha, 2009 A. Mishra, B. Jha Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress Bioresource Technol., 100 (2009), pp. 3382-3386 ArticleDownload PDFView Record in ScopusGoogle Scholar Massyuk, 1973 Massyuk, N.P., 1973. Morphology, taxonomy, ecology and geographic distribution on the genus Dunaliella Teod. and prospects for its potential utilization. Naukova Dumka Kiev. 244p. (Original in Russian). Google Scholar Oren, 2005 A. Oren A hundred years of Dunaliella research: 1905–2005 Saline Syst., 1 (2005), pp. 1-14 CrossRefView Record in ScopusGoogle Scholar Priyadarshani and Rath, 2012 I. Priyadarshani, B. Rath Commercial and industrial applications of micro algae – a review J. Algal. Biomass Utln., 3 (2012), pp. 89-100 View Record in ScopusGoogle Scholar Pulz and Gross, 2004 O. Pulz, W. Gross Valuable products from biotechnology of microalgae Appl. Microbiol. Biot., 65 (2004), pp. 635-648 CrossRefView Record in ScopusGoogle Scholar Raja et al., 2008 R. Raja, S. Hemaiswarya, N. Kumar, S. Sridhar, R. Rengasamy A perspective on the biotechnological potential of microalgae Crit. Rev. Microbiol., 34 (2008), pp. 77-88 CrossRefView Record in ScopusGoogle Scholar Raja et al., 2007 R. Raja, S. Hemaiswarya, R. Rengasamy Exploitation of Dunaliella for β-carotene production Appl. Microbiol. Biot., 74 (2007), pp. 517-523 CrossRefView Record in ScopusGoogle Scholar Sathasivam and Juntawong, 2013 R. Sathasivam, N. Juntawong Modified medium for enhanced growth of Dunaliella strains Int J Curr Sci., 5 (2013), pp. 67-73 View Record in ScopusGoogle Scholar Mostafa, 2012 S.M. Mostafa Microalgal biotechnology: prospects and applications N. Kumar, S. Charan (Eds.), Plant Sience, Intech Open Access Publisher, New Delhi (2012), pp. 140-159 View Record in ScopusGoogle Scholar Spolaore et al., 2006 P. Spolaore, C. Joannis, E. Duran, A. Isambert Commercial applications of microalgae J. Biosci. Bioeng., 101 (2006), pp. 87-96 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar Strickland and Parsons, 1972 J.D. Strickland, T.R. Parsons A Practical Handbook of Seawater Analysis (second ed.), Fisheries Research Board of Canadá, Otawa (1972), pp. 134-167 Google Scholar Vigani et al., 2015 M. Vigani, C. Parisi, E. Cerezo Food and feed products from micro-algae: market opportunities and challenges for the EU Trends Food Sci. Tech., 42 (2015), pp. 81-92 ArticleDownload PDFView Record in ScopusGoogle Scholar Vílchez et al., 2011 C. Vílchez, E. Forján, M. Cuaresma, F. Bédmar, I. Garbayo, J. Vega Marine carotenoids: biological functions and commercial applications Mar. Drugs., 9 (2011), pp. 319-333 CrossRefView Record in ScopusGoogle Scholar Villa et al., 2014 A. Villa, D. Herazo, A.C. Torregroza Efecto del fotoperiodo sobre el crecimiento de la diatomea Chaetoceros calcitrans (clon c-cal) en cultivos estáticos Intropica, 9 (2014), pp. 111-117 CrossRefView Record in ScopusGoogle Scholar Wichuk et al., 2014 K. Wichuk, S. Brynjólfsson, W. Fu Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects Bioengineered, 5 (2014), pp. 204-208 CrossRefView Record in ScopusGoogle Scholar Wykoff et al., 1998 D. Wykoff, J. Davies, A. Melis, A. Grossman The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii Plant Physiol., 117 (1998), pp. 129-139 CrossRefView Record in ScopusGoogle Scholar Wu et al., 2016 Z. Wu, P. Duangmanee, P. Zhao, N. Juntawong, C. Ma the effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil Jundishapur. J. Microbiol., 1 (2016), pp. 1-9 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar Zhu and Jiang, 2008 Y. Zhu, J. Jiang Continuous cultivation of Dunaliella salina in photobioreactor for the production of β-carotene Eur. Food Res. Technol., 227 (2008), pp. 953-959 CrossRefView Record in ScopusGoogle Scholarspa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal