Mostrar el registro sencillo del ítem

dc.contributor.authorMichels, Moniquespa
dc.contributor.authorRocha Abatti, Marianespa
dc.contributor.authorAvila, Pricilaspa
dc.contributor.authorVieira, Andrielespa
dc.contributor.authorBorges, Heloisaspa
dc.contributor.authorCarvalho Junior, Celsospa
dc.contributor.authorWendhausen, Diogospa
dc.contributor.authorGasparotto, Jucianospa
dc.contributor.authorTiefensee Ribeiro, Camilaspa
dc.contributor.authorMoreira, José Cláudio Fonsecaspa
dc.contributor.authorPens Gelain, Danielspa
dc.contributor.authorDal‐Pizzol, Felipespa
dc.date.accessioned2019-11-13T15:19:40Z
dc.date.available2019-11-13T15:19:40Z
dc.date.issued2019-10-26
dc.identifier.issn1582-1838spa
dc.identifier.issn1582-4934spa
dc.identifier.urihttp://hdl.handle.net/11323/5646spa
dc.description.abstractWe aim to characterize the kinetics of early and late microglial phenotypes after systemic inflammation in an animal model of severe sepsis and the effects of minocycline on these phenotypes. Rats were subjected to CLP, and some animals were treated with minocycline (10 ug/kg) by i.c.v. administration. Animals were killed 24 hours, 5, 10 and 30 days after sepsis induction, and serum and hippocampus were collected for subsequent analyses. Real‐time PCR was performed for M1 and M2 markers. TNF‐α, IL‐1β, IL‐6, IL‐10, CCL‐22 and nitrite/nitrate levels were measured. Immunofluorescence for IBA‐1, CD11b and arginase was also performed. We demonstrated that early after sepsis, there was a preponderant up‐regulation of M1 markers, and this was not switched to M2 phenotype markers later on. We found that up‐regulation of both M1 and M2 markers co‐existed up to 30 days after sepsis induction. In addition, minocycline induced a down‐regulation, predominantly, of M1 markers. Our results suggest early activation of M1 microglia that is followed by an overlap of both M1 and M2 phenotypes and that the beneficial effects of minocycline on sepsis‐associated brain dysfunction may be related to its effects predominantly on the M1 phenotype.spa
dc.language.isoeng
dc.publisherJournal of Cellular and Molecular Medicinespa
dc.relation.ispartofhttps://doi.org/10.1111/jcmm.14606spa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subjectM1/M2spa
dc.subjectMicrogliaspa
dc.subjectInflammationspa
dc.subjectMicroglial polarizationspa
dc.subjectPhenotypesspa
dc.subjectSepsisspa
dc.titleCharacterization and modulation of microglial phenotypes in an animal model of severe sepsisspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Deng YY, Fang M, Zhu GF, et al. Role of microglia in the pathogen-esis of sepsis-associated encephalopathy. CNS Neurol Disord Drug Targets.2013;12:720‐725. 2. Michels M, Danielski LG, Dal-Pizzol F, et al. Neuroinflammation: microglial activation during sepsis. Curr Neurovasc Res. 2014;11:262-270. 3. Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impair-ment. Brain Behav Immun.2015;43:54‐59. 4. Michels M, Danieslki LG, Vieira A, et al. CD40-CD40 ligand path-way is a major component of acute neuroinflammation and con-tributes to long-term cognitive dysfunction after sepsis. Mol Med. 2015;26(21):219‐226. 5. Moraes CA, Santos G, Spohr TCLdSe, et al. Activated microglia‐in-duced deficits in excitatory synapses through IL- 1β: implications for cognitive impairment in sepsis. Mol Neurobiol. 2015;52(1):653‐663. 6. Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflammation. 2015;12:114. 7. Sandiego CM, Gallezot JD, Pittman B, et al. Imaging robust microg-lial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112(40):12468‐12473. 8. Hanisch UK. Proteins in microglial activation: inputs and outputs by subsets. Curr Protein Pep Sci. 2013;14:3‐15. 9. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461‐553. 10. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist Nat Neurosci. 2016;19:987-991. 11. Ekdahl CT, Claasen JH, Bonde S, et al. Inflammation is detri-mental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632-13637. 12. Butovsky O, Ziv Y, Schwartz A, et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31:149-160. 13. Roughton K, Andreasson U, Blomgren K, Kalm M. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain. Dev Neurosci. 2013;35:406‐415. 14. Nikolakopoulou AM, Dutta R, Chen Z, et al. Activated microglia en-hance neurogenesis via trypsinogen secretion. Proc Natl Acad Sci U S A. 2013;110:8714-8719. 15. Pang T, Wang J, Benicky J, et al. Minocycline ameliorates LPS‐in-duced inflammation in human monocytes by novel mechanisms in-cluding LOX-1, Nur77 and LITAF inhibition. Biochim Biophys Acta. 2012;1820:503‐510. 16. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186-196. 17. Schwalm MT, Pasquali M, Miguel SP, et al. Acute brain inflamma-tion and oxidative damage are related to long-term cognitive defi-cits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol. 2014;49(1):380‐385. 18. Biff D, Petronilho F, Constantino L, et al. Correlation of acute phase inflammatory and oxidative markers with long-term cognitive im-pairment in sepsis survivors rats. Shock. 2013;40:45‐48. 19. Comim CM, Cassol-Jr OJ, Constantino LS, et al. Alterations in in-flammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochem Res. 2011;36(2):304-311. 20. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophoto-metric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62‐71. 21. d’Avila JC, Siqueira LD, Mazeraud A, et al. Age-related cognitive im-pairment is associated with long-term neuroinflammation and oxi-dative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation. 2018;15(1):28. 22. Michels M, Ávila P, Pescador B, et al. Microglial cells depletion increases inflammation and modifies microglial phenotypes in an animal model of severe sepsis. Mol Neurobiol. 2019. https://doi.org/10.1007/s12035‐019‐1606‐2 23. Zrzavy T, Höftberger R, Berger T, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45(3):278‐290. 24. Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci. 2018;13:453‐461. 25. Munder M, Eichmann K, Moran JM, et al. Th1/Th2‐regulated ex-pression of arginase isoforms in murine macrophages and dendritic cells. J Immunol. 1999;163:3771-3777. 26. Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol. 2003;53:267‐270. 27. Barichello T, Machado RA, Constantino L, et al. Antioxidant treat-ment prevented late memory impairment in an animal model of sep-sis. Crit Care Med. 2007;35(9):2186‐2190. 28. Mantovani A, Germano G, Marchesi F, et al. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol.2011;41:2522‐2525. 29. Zhao Q, Xie X, Fan Y, et al. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment. Sci Rep. 2015;5:9513. 30. Hoeger S, Bergstraesser C, Selhorst J, et al. Modulation of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant. 2010;10(3):477-489. 31. Schweighöfer H, Rummel C, Roth J, et al. Modulatory effects of vagal stimulation on neurophysiological parameters and the cellu-lar immune response in the rat brain during systemic inflammation. Intensive Care Med Exp. 2016;4(1):19. 32. Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm A-C. Minocycline protects basal forebrain cholinergic neurons from mu p75‐saporin immunotoxic lesioning. Eur J Neurosci. 2004;19(12):3305‐3316. 33. Jeremias IC, Victorino VJ, Barbeiro HV, et al. The role of ace-tylcholine in the inflammatory response in animals surviving sepsis induced by cecal ligation and puncture. Mol Neurobiol. 2016;53(10):6635‐6643. 34. Adembri C, Selmi V, Vitali L, et al. Minocycline but not tigecycline is neuroprotective and reduces the neuroinflammatory response in-duced by the superimposition of sepsis upon traumatic brain injury. Crit Care Med. 2014;42(8):e570‐e582. 35. Hoshino K, Hayakawa M, Morimoto Y. Minocycline prevents the impairment of hippocampal long-term potentiation in the septic mouse. Shock. 2017;48(2):209-214. 36. Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F. Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp. 2015c;3(1):30.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal