Show simple item record

dc.creatorQuintana, Yamilet
dc.creatorRamírez, William
dc.creatorUrieles, Alejandro
dc.date.accessioned2020-06-19T04:52:18Z
dc.date.available2020-06-19T04:52:18Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/6387
dc.description.abstractThis paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics and Information Scienceses_ES
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectEuler polynomialses_ES
dc.subjectEuler matrixes_ES
dc.subjectGeneralized Euler matrixes_ES
dc.subjectGeneralized Pascal matrixes_ES
dc.subjectFibonacci matrixes_ES
dc.subjectLucas matrixes_ES
dc.titleEuler matrices and their algebraic properties revisitedes_ES
dc.typeArticlees_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal