Show simple item record

dc.creatoramelec, viloria
dc.creatorPineda Lezama, Omar Bonerge
dc.creatorMercado Caruso, Nohora
dc.description.abstractNowadays, the DL algorithms show good results when used in the solution of different problems which present similar characteristics as the great amount of data and high dimensionality. However, one of the main challenges that currently arises is the classification of high dimensionality databases, with very few samples and high-class imbalance. Biomedical databases of gene expression microarrays present the characteristics mentioned above, presenting problems of class imbalance, with few samples and high dimensionality. The problem of class imbalance arises when the set of samples belonging to one class is much larger than the set of samples of the other class or classes. This problem has been identified as one of the main challenges of the algorithms applied in the context of Big Data. The objective of this research is the study of genetic expression databases, using conventional methods of sub and oversampling for the balance of classes such as RUS, ROS and SMOTE. The databases were modified by applying an increase in their imbalance and in another case generating artificial
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceProcedia Computer Sciencespa
dc.subjectImbalance of classesspa
dc.subjectMicroarray databasesspa
dc.subjectGenetic expressionspa
dc.subjectDeep learning techniquesspa
dc.titleUnbalanced data processing using oversampling: machine Learningspa
dcterms.references[1] Bolón-Canedo, V., Alonso-Betanzos, A., López-de-Ullibarri, I., & Cao, R. (2019). Challenges and Future Trends for Microarray Analysis. In Microarray Bioinformatics (pp. 283-293). Humana, New York,
dcterms.references[2] Sayed, S., Nassef, M., Badr, A., & Farag, I. (2019). A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Systems with Applications, 121,
dcterms.references[3] Pal, M.: Extreme learning machine for land cover classification. International Journal of Remote Sensing, 30(14), pp. 3835–3841 (2008)spa
dcterms.references[4] Guillen, P., & Ebalunode, J. (2016, December). Cancer classification based on microarray gene expression data using deep learning. In 2016 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1403-1405).
dcterms.references[5] Nene, S.: Deep learning for natural languaje processing. International Research Journal of Engineering Technology, 4, pp. 930–933 (2017)spa
dcterms.references[6] Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C., ... & Lundin, J. (2018). Deep learning-based tissue analysis predicts outcome in colorectal cancer. Scientific reports, 8(1),
dcterms.references[7] Reyes-Nava, A., Sánchez, J. S., Alejo, R., Flores-Fuentes, A. A., & Rendón-Lara, E. (2018, June). Performance analysis of deep neural networks for classification of gene-expression microarrays. In Mexican Conference on Pattern Recognition (pp. 105-115). Springer,
dcterms.references[8] Viloria, A., & Lezama, O. B. P. (2019). Improvements for determining the number of clusters in k-means for innovation databases in SMEs. In Procedia Computer Science (Vol. 151, pp. 1201–1206). Elsevier B.V.
dcterms.references[9] Flores-Fuentes, A. A., & Granda-Gutiérrez, E. E. (2019, March). Using Deep Learning to Classify Class Imbalanced Gene-Expression Microarrays Datasets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings (Vol. 11401, p. 46).
dcterms.references[10] Ding, L., & McDonald, D. J. (2017). Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Bioinformatics, 33(14),
dcterms.references[11] Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene selection and classification of microarray data using convolutional neural network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150).
dcterms.references[12] Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University-Computer and Information
dcterms.references[13] Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., ... & Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific reports, 8(1),
dcterms.references[14] Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., & Pechenizkiy, M. (2019). Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware. arXiv preprint
dcterms.references[15] Shahane, R., Ismail, M., & Prabhu, C. S. R. (2019). A Survey on Deep Learning Techniques for Prognosis and Diagnosis of Cancer from Microarray Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 16(12),
dcterms.references[16] Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B., ... & Litjens, G. (2020). Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet
dcterms.references[17] Salman, H. K.: Cost-Sensitive Learning of Deep Feature Representations from Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems (2017)spa
dcterms.references[18] Nguyen, A.B., Phung, S.L.: A supervised learning approach for imbalanced data sets. In: Proc. of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008)spa
dcterms.references[19] Shekar, B. H., & Dagnew, G. (2020). L1-Regulated Feature Selection and Classification of Microarray Cancer Data Using Deep Learning. In Proceedings of 3rd International Conference on Computer Vision and Image Processing (pp. 227-242). Springer,
dcterms.references[20] Basavegowda, H. S., & Dagnew, G. (2020). Deep learning approach for microarray cancer data classification. CAAI Transactions on Intelligence Technology, 5(1),
dcterms.references[21] Khaire, U. M., & Dhanalakshmi, R. (2020). High-dimensional microarray dataset classification using an improved adam optimizer (iAdam). Journal of Ambient Intelligence and Humanized Computing,
dcterms.references[22] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal