Show simple item record

dc.creatoramelec, viloria
dc.creatorPineda Lezama, Omar Bonerge
dc.creatorMercado Caruso, Nohora
dc.date.accessioned2021-01-04T21:18:03Z
dc.date.available2021-01-04T21:18:03Z
dc.date.issued2020
dc.identifier.issn1877-0509
dc.identifier.urihttps://hdl.handle.net/11323/7655
dc.description.abstractNowadays, the DL algorithms show good results when used in the solution of different problems which present similar characteristics as the great amount of data and high dimensionality. However, one of the main challenges that currently arises is the classification of high dimensionality databases, with very few samples and high-class imbalance. Biomedical databases of gene expression microarrays present the characteristics mentioned above, presenting problems of class imbalance, with few samples and high dimensionality. The problem of class imbalance arises when the set of samples belonging to one class is much larger than the set of samples of the other class or classes. This problem has been identified as one of the main challenges of the algorithms applied in the context of Big Data. The objective of this research is the study of genetic expression databases, using conventional methods of sub and oversampling for the balance of classes such as RUS, ROS and SMOTE. The databases were modified by applying an increase in their imbalance and in another case generating artificial noise.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceProcedia Computer Sciencespa
dc.subjectImbalance of classesspa
dc.subjectMicroarray databasesspa
dc.subjectGenetic expressionspa
dc.subjectDeep learning techniquesspa
dc.titleUnbalanced data processing using oversampling: machine Learningspa
dc.typearticlespa
dcterms.references[1] Bolón-Canedo, V., Alonso-Betanzos, A., López-de-Ullibarri, I., & Cao, R. (2019). Challenges and Future Trends for Microarray Analysis. In Microarray Bioinformatics (pp. 283-293). Humana, New York, NY.spa
dcterms.references[2] Sayed, S., Nassef, M., Badr, A., & Farag, I. (2019). A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Systems with Applications, 121, 233-243.spa
dcterms.references[3] Pal, M.: Extreme learning machine for land cover classification. International Journal of Remote Sensing, 30(14), pp. 3835–3841 (2008)spa
dcterms.references[4] Guillen, P., & Ebalunode, J. (2016, December). Cancer classification based on microarray gene expression data using deep learning. In 2016 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1403-1405). IEEE.spa
dcterms.references[5] Nene, S.: Deep learning for natural languaje processing. International Research Journal of Engineering Technology, 4, pp. 930–933 (2017)spa
dcterms.references[6] Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C., ... & Lundin, J. (2018). Deep learning-based tissue analysis predicts outcome in colorectal cancer. Scientific reports, 8(1), 1-11.spa
dcterms.references[7] Reyes-Nava, A., Sánchez, J. S., Alejo, R., Flores-Fuentes, A. A., & Rendón-Lara, E. (2018, June). Performance analysis of deep neural networks for classification of gene-expression microarrays. In Mexican Conference on Pattern Recognition (pp. 105-115). Springer, Cham.spa
dcterms.references[8] Viloria, A., & Lezama, O. B. P. (2019). Improvements for determining the number of clusters in k-means for innovation databases in SMEs. In Procedia Computer Science (Vol. 151, pp. 1201–1206). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.04.172.spa
dcterms.references[9] Flores-Fuentes, A. A., & Granda-Gutiérrez, E. E. (2019, March). Using Deep Learning to Classify Class Imbalanced Gene-Expression Microarrays Datasets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings (Vol. 11401, p. 46). Springer.spa
dcterms.references[10] Ding, L., & McDonald, D. J. (2017). Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Bioinformatics, 33(14), i350-i358.spa
dcterms.references[11] Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene selection and classification of microarray data using convolutional neural network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150). IEEE.spa
dcterms.references[12] Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University-Computer and Information Sciences.spa
dcterms.references[13] Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., ... & Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific reports, 8(1), 1-11.spa
dcterms.references[14] Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., & Pechenizkiy, M. (2019). Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware. arXiv preprint arXiv:1901.09181.spa
dcterms.references[15] Shahane, R., Ismail, M., & Prabhu, C. S. R. (2019). A Survey on Deep Learning Techniques for Prognosis and Diagnosis of Cancer from Microarray Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 16(12), 5078-5088.spa
dcterms.references[16] Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B., ... & Litjens, G. (2020). Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet Oncology.spa
dcterms.references[17] Salman, H. K.: Cost-Sensitive Learning of Deep Feature Representations from Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems (2017)spa
dcterms.references[18] Nguyen, A.B., Phung, S.L.: A supervised learning approach for imbalanced data sets. In: Proc. of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008)spa
dcterms.references[19] Shekar, B. H., & Dagnew, G. (2020). L1-Regulated Feature Selection and Classification of Microarray Cancer Data Using Deep Learning. In Proceedings of 3rd International Conference on Computer Vision and Image Processing (pp. 227-242). Springer, Singapore.spa
dcterms.references[20] Basavegowda, H. S., & Dagnew, G. (2020). Deep learning approach for microarray cancer data classification. CAAI Transactions on Intelligence Technology, 5(1), 22-33.spa
dcterms.references[21] Khaire, U. M., & Dhanalakshmi, R. (2020). High-dimensional microarray dataset classification using an improved adam optimizer (iAdam). Journal of Ambient Intelligence and Humanized Computing, 1-18.spa
dcterms.references[22] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1877050920316975spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.procs.2020.07.018


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal