Show simple item record

dc.creatorLima, Bianca D.
dc.creatorTeixeira, Elba C.
dc.creatorHower, James C.
dc.creatorCiveira, Matheus S.
dc.creatorRamírez, Omar
dc.creatorYang, Xue-cheng
dc.creatorSilva Oliveira, Marcos Leandro
dc.creatorSilva Oliveira, Luis Felipe
dc.date.accessioned2021-01-12T17:04:25Z
dc.date.available2021-01-12T17:04:25Z
dc.date.issued2021
dc.identifier.issn1674-9871
dc.identifier.urihttps://hdl.handle.net/11323/7676
dc.description.abstractHaving a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAPA). An intense sampling campaign during thirteen consecutive months was carried out and the chemical composition of NPs was examined by advanced microscopy techniques. The results showed that highest concentrations of the pollutants occur in colder seasons and influenced by variables such as frequency of the trains and passenger densities. Also, internal and external sources of pollution at the stations were identified. The predominance of NPs enriched with metals that increase oxidative stress like Cd, Fe, Pb, Cr, Zn, Ni, V, Hg, Sn, and Ba both on the platforms and inside trains, including Fe-minerals as hematite and magnetite, represents a critical risk to the health of passengers and employees of the system. This interdisciplinary and multi-analytical study aims to provide an improved understanding of reported adverse health effects induced by railway system aerosols.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceGeoscience Frontiersspa
dc.subjectNanoparticlesspa
dc.subjectPotential hazardous elementsspa
dc.subjectEnvironmental chemistryspa
dc.subjectHuman healthspa
dc.subjectRailway environmentspa
dc.subjectIndoor air qualityspa
dc.titleMetal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollutionspa
dc.typearticlespa
dcterms.referencesAarnio, P., Yli-Tuomi, T., 2005. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 39, 5059–5066.spa
dcterms.referencesAbbasi, S., Wahlström, J., Olander, L., Larsson, Ch., Olofsson, U., Sellgren, U., 2011. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 273, 93–99.spa
dcterms.referencesAbbasi, S., Jansson, A., Sellgren, U., Olofsson, U., 2013. Particle emissions from rail traffic: a literature review. Crit. Rev. Env. Sci. Tec. 43, 2511–2544.spa
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.spa
dcterms.referencesBolognin, S., Messori, L., Zatta, P., 2009. Metal ion physiopathology in neurodegenerative disorders. Neuromol. Med. 11, 223–238.spa
dcterms.referencesCartenì, A., Cascetta, F., Campana, S., 2015. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 101, 328–337.spa
dcterms.referencesCepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, Ch., Dhana, K., Bramer, W., Franco, O., 2017. Levels of ambient air pollution according to mode of transport: a systematic review. The Lancet Public Health 2, 23–34.spa
dcterms.referencesCerletti, P., Eze, I.C., Schaffner, E., Imboden, M., Probst-Hensch, N., 2020. The independent association of source-specific transportation noise exposure, noise annoyance and noise sensitivity with health-related quality of life. Environ. Int. 143, 105960.spa
dcterms.referencesCha, Y., Tu, M., Elmgren, M., Silvergren, S., Olofsson, U., 2018. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Environ. Res. 166, 16–24.spa
dcterms.referencesChen, X.C., Zhang, Z.S., Engling, G., Zhang, R.J., Tao, J., Lin, M., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmos. Pollut. Res. 5, 361–370.spa
dcterms.referencesChen, X.C., Cao, J.J., Ward, T.J., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ. 742, 140501.spa
dcterms.referencesCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.spa
dcterms.referencesCNT - National Confederation of Transport, 2014. Statistical report March 2014. https:// web.archive.org/web/20150923205053/http://www.cnt.org.br/boletim_marco_ 2014. (Accessed 5 May 2020) (in Portuguese).spa
dcterms.referencesCusack, M., Talbot, N., Ondráček, J., Minguillón, M.C., Martins, V., Klouda, K., Ždímal, V., 2015. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 188, 176–183.spa
dcterms.referencesDe Miranda, R.M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P.A., Saldiva, P., 2011. Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 5, 63–77.spa
dcterms.referencesDe Paoli, F., Agudelo-Castañeda, D., Teixeira, E., Silva, L., Kumar, P., 2018. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanopart. Res. 20, 264.spa
dcterms.referencesFont, O., Moreno, T., Querol, X., Martins, V., Sánchez Rodas, D., de Miguel, E., Capdevila, M., 2019. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transport. Res. D:Tr. E. 72, 17–35.spa
dcterms.referencesFont, A., Tremper, A., Lin, Ch., Priestman, M., Marsh, D., Woods, M., Heal, M., Green, D., 2020. Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. Environ. Pollut. 262, 114284.spa
dcterms.referencesGarshick, E., Laden, F., Hart, J.E., Rosner, B., Davis, M.E., Eisen, E.A., Smith, T.J., 2008. Lung cancer and vehicle exhaust in trucking industry workers. Environ. Health Perspectives 116, 1327–1332.spa
dcterms.referencesGivoni, M., Brand, C., Watkiss, P., 2009. Are railways “climate friendly”? Built Environ. 35, 70–86.spa
dcterms.referencesGuha, N., Straif, K., Benbrahim-Tallaa, L., 2011. The IARC monographs on the carcinogenicity of crystalline silica. Med. Lav. 102, 310–320.spa
dcterms.referencesHam, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento. California. Atmos. Environ. 167, 335–345.spa
dcterms.referencesHeal, M.R., Kumar, P., Harrison, R.M., 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606–6630.spa
dcterms.referencesIslam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10- associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053.spa
dcterms.referencesJeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52.spa
dcterms.referencesJohansson, C., Johansson, P.Å., 2003. Particulate matter in the underground of Stockholm. Atmos. Environ. 37, 3–9.spa
dcterms.referencesJohansson, C., Norman, M., Gidhagen, L., 2007. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 127, 477–487.spa
dcterms.referencesKang, S., Hwang, H., Park, Y., Kim, H., Ro, C.U., 2008. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 42, 9051–9057.spa
dcterms.referencesKaragulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M., 2015. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483.spa
dcterms.referencesKarlsson, H.L., Holgersson, Å., Möller, L., 2008. Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 21, 726–731.spa
dcterms.referencesKelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526.spa
dcterms.referencesKnibbs, L., Cole-Hunter, T., Morawska, L., 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45, 2611–2622.spa
dcterms.referencesKrall, J.R., Ladva, C.N., Russell, A.G., Golan, R., Peng, X., Shi, G., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta commuters exposure studies. J. Expo. Sci. Environ. Epidemiol. 28, 337–347.spa
dcterms.referencesKumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmosheric environment: a review. J. Aerosol Sci 42, 580–603.spa
dcterms.referencesKumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133, 105181.spa
dcterms.referencesKwon, S.-B., Park, D., Cho, Y., Park, E.-Y., 2010. Measurement of natural ventilation rate in Seoul Metropolitan Subway Cabin. Indoor Built Environ. 19, 366–374.spa
dcterms.referencesKwon, S.B., Jeong, W., Park, D., Kim, K.T., Cho, K.H., 2015. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations. Korea. J. Hazard. Mater. 297, 295–303.spa
dcterms.referencesLee, H.W., Namgung, H.G., Kwon, S.B., 2018. Effect of train velocity on the amount of airborne wear particles generated from wheel–rail contacts. Wear 414, 296–302.spa
dcterms.referencesLi, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 524, 237–245.spa
dcterms.referencesLiu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., 2019. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381, 705–715.spa
dcterms.referencesLundbäck, M., 2009. Cardiovascular effects of exposure to diesel exhaust - mechanistic and interventional studies. Medical Dissertation, Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy. Umeå University, Umeå, Sweden.spa
dcterms.referencesMartins, V., 2016. Air quality in subway systems: particulate matter concentrations, chemical composition, sources and personal exposure. Ph.D. thesis. University of Barcelona 234p.spa
dcterms.referencesMartins, V., Cruz Minguillón, M., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Lazaridis, M., 2015. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 90, 103–113.spa
dcterms.referencesMendes, L., Gini, M.I., Biskos, G., Colbeck, I., Eleftheriadis, K., 2018. Airborne ultrafine particles in a naturally ventilated metro station: dominant sources and mixing state determined by particle size distribution and volatility measurements. Environ. Pollut. 239, 82–94.spa
dcterms.referencesMinguillón, M.C., Reche, C., Martins, V., Amato, F., de Miguel, E., Capdevila, M., Moreno, T., 2018. Aerosol sources in subway environments. Environ. Res. 167, 314–328.spa
dcterms.referencesMohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents - a critical review. J. Hazard. Mater. 142, 1–53.spa
dcterms.referencesMohsen, M., Ahmed, M.B., Zhou, J.L., 2018. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney. Australia. Transport. Res. D:Tr. E. 62, 112–124.spa
dcterms.referencesMorawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138.spa
dcterms.referencesMoreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Gibbons, W., 2014. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92, 461–468.spa
dcterms.referencesMoreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, M.C., Gibbons, W., 2015. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 505, 367–375.spa
dcterms.referencesMorillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., Madariaga, J.M., 2016. Study of particulate matter from primary/secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 550, 285–296.spa
dcterms.referencesPacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, 269–298.spa
dcterms.referencesPark, D.U., Ha, K.C., 2008. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul. Korea. Environ. Int. 34, 629–634.spa
dcterms.referencesPetzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., Zhang, X.-Y., 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379.spa
dcterms.referencesPun, V.C., Tian, L., Yu, I.T., Kioumourtzoglou, M.A., Qiu, H., 2015. Differential distributed lag patterns of source-specific particulate matter on respiratory emergency hospitalizations. Environ. Sci. Technol. 49, 3830–3838.spa
dcterms.referencesQuerol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., De Miguel, E., Capdevilla, M., 2012. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12, 5055–5076.spa
dcterms.referencesQuispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.spa
dcterms.referencesRahim, M.F., Pal, D., Ariya, P.A., 2019. Physicochemical studies of aerosols at Montreal Trudeau Airport: the importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 246, 734–744.spa
dcterms.referencesRamírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655spa
dcterms.referencesReche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2015. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 120, 417–426.spa
dcterms.referencesReche, C., Moreno, T., Martins, V., Minguillón, M.C., Jones, T., de Miguel, E., Capdevila, M., Centelles, S., Querol, X., 2017. Factors controlling particle number concentration and size at metro stations. Atmos. Environ. 156, 169–181.spa
dcterms.referencesRibeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041.spa
dcterms.referencesRice, M.B., Ljungman, P.L., Wilker, E.H., Gold, D.R., Schwartz, J.D., Koutrakis, P., 2013. Shortterm exposure to air pollution and lung function in the Framingham heart study. Am. J. Respir. Crit. Care Med. 188, 1351–1357.spa
dcterms.referencesRichmond-Bryant, J., Long, T.C., 2020. Influence of exposure measurement errors on results from epidemiologic studies of different designs. J. Expo. Sci. Environ. Epidemiol. 30, 420–429.spa
dcterms.referencesRipanucci, G., Grana, M., Vicentini, L., Magrini, A., Bergamaschi, A., 2006. Dust in the underground railway tunnels of an Italian town. J. Occup. Environ. Hyg. 3, 16–25.spa
dcterms.referencesRis, C., 2007. U.S. EPA Health assessment for diesel engine exhaust: a review. Inhal. Toxicol 19 (Supplement 1), 229–239.spa
dcterms.referencesRojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.spa
dcterms.referencesRoss, M., Nolan, R.P., Langer, M.A., Cooper, W.C., 1993. Health effects of mineral dusts. In: Guthrie Jr., G.D., Mossman, B.T. (Eds.), Reviews in Mineralogy and Geochemistry. Book Crafters, Inc., Chelsea, Michigan, p. 361.spa
dcterms.referencesSalma, I., Weidinger, T., Maenhaut, W., 2007. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 41, 8391–8405.spa
dcterms.referencesShakya, K.M., Saad, A., Aharonian, A., 2020. Commuter exposure to particulate matter at underground subway stations in Philadelphia. Build. Environ. 186, 107322.spa
dcterms.referencesSilva, L.F.O., Milanes, C., Pinto, D., Ramírez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.spa
dcterms.referencesSundh, J., Olofsson, U., Olander, L., Jansson, A., 2009. Wear rate testing in relation to airborne particles generated in a wheel-rail contact. Lubr. Sci. 21, 135–150.spa
dcterms.referencesTan, S.H., Roth, M., Velasco, E., 2017. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 170, 245–258.spa
dcterms.referencesTeixeira, E.C., Agudelo-Castañeda, D.M., Guimarães, J.M., Leal, K.A., de Oliveira, K., Wiegand, F., 2012. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS. Brazil. Atmos. Res. 118, 390–403.spa
dcterms.referencesTezza, V.B., Scarpato, M., Oliveira, L.F.S., Bernardin, A.M., 2015. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 276, 60–65.spa
dcterms.referencesTian, Y., Liu, H., Liang, T., Xiang, X., Li, M., Juan, J., 2019. Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: a time-series analysis. Int. J. Epidemiol. 48, 1142–1151. Tokarek, S., Bernis, A., 2006. An example of particle concentration reduction in Parisian subway stations by electrostatic precipitation. Environ. Technol. 27, 1279–1287.spa
dcterms.referencesVan Ryswyk, K., Anastasopolos, A.T., Evans, G., Sun, L., Sabaliauskas, K., Kulka, R., Weichenthal, S., 2017. Metro commuter exposures to particulate air pollution and PM2.5-associated elements in three Canadian cities: the urban transportation exposure study. Environ. Sci. Technol. 51, 5713–5720.spa
dcterms.referencesVilcassim, M.J., Thurston, G.D., Peltier, R.E., Gordon, T., 2014. Black carbon and particulate matter (PM2.5) concentrations in New York City’s Subway Stations. Environ. Sci. Technol. 48, 14738–14745.spa
dcterms.referencesWang, F., Costabileb, F., Li, H., Fang, D., Alligrini, I., 2010. Measurements of ultrafine particle size distribution near Rome. Atmos. Res. 98, 69–77.spa
dcterms.referencesWang, X., Westerdahl, D., Wu, Y., Pan, X., Zhang, K.M., 2011. On-road emission factor distributions of individual diesel vehicles in and around Beijing. China. Atmos. Environ. 45, 503–513.spa
dcterms.referencesWang, B.Q., Liu, J.F., Ren, Z.H., Chen, R.H., 2016. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res. 23, 22647–22657.spa
dcterms.referencesWaychunas, G.A., Kim, C.S., Banfield, J.F., 2005. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433.spa
dcterms.referencesWHO, 2013. Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project. The WHO Regional Office for Europe. Technical Report, Copenhagen, Denmark.spa
dcterms.referencesXu, B., Hao, J., 2017. Air quality inside subway metro indoor environment worldwide: a review. Environ. Int. 107, 33–46.spa
dcterms.referencesYoung, L.-H., Wang, Y.-T., Hsu, H.-C., Lin, C.-H., Liou, Y.-J., Lai, Y.-C., Cheng, M.-T., 2012. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district. Sci. Total Environ. 425, 135–145.spa
dcterms.referencesZhao, X., Ke, Y., Zuo, J., Xiong, W., Wu, P., 2020. Evaluation of sustainable transport research in 2000-2019. J. Clean. Prod. 256, 120404.spa
dcterms.referencesZhu, Y., Kuhn, T., Mayo, P., Hinds, W.C., 2006. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 40, 2531–2536spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1674987120302693?via%3Dihub#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gsf.2020.12.010


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal