Show simple item record

dc.creatoramelec, viloria
dc.creatorLizardo Zelaya, Nelson Alberto
dc.creatorMercado Caruso, Nohora Nubia
dc.date.accessioned2021-01-13T21:41:06Z
dc.date.available2021-01-13T21:41:06Z
dc.date.issued2020
dc.identifier.issn1877-0509
dc.identifier.urihttps://hdl.handle.net/11323/7684
dc.description.abstractThe problem of data transmission in wireless sensor networks (WSN), with real time guarantees, is an issue that has important references in the international scientific community, but that still does not have a solution that can completely satisfy this requirement [1]. Therefore, real time data transmission with WSN is considered an open issue with many possibilities of improvement. In this sense, this document presents a new procedure to ensure this type of transmission with WSN, particularly from the planning of the resources available for data transmission in the network, taking as a reference the IEEE 802.15.4 standard.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceProcedia Computer Sciencespa
dc.subjectData transmissionspa
dc.subjectWireless sensor networks (WSN)spa
dc.subjectStatic planningspa
dc.titleDesign of a Network with wireless sensor applied to data transmission based on IEEE 802.15.4 standardspa
dc.typearticlespa
dcterms.references[1] Huang, R., & Zaruba, G. V. (2007, March). Static path planning for mobile beacons to localize sensor networks. In Fifth annual IEEE international conference on pervasive computing and communications workshops (PerComW'07) (pp. 323-330). IEEE.spa
dcterms.references[2] Kaur, R., Gupta, A., & Goyal, R. (2020). Analysis of Coverage Hole Problem for Detection and Restoration in Wireless Sensor Networks. Advanced Science, Engineering and Medicine, 12(3), 403-408.spa
dcterms.references[3] Tsilomitrou, O., Tzes, A., & Manesis, S. (2017, July). Mobile robot trajectory planning for large volume data-muling from wireless sensor nodes. In 2017 25th Mediterranean Conference on Control and Automation (MED) (pp. 1005-1010). IEEE.spa
dcterms.references[4] Renold, A. P., & Ganesh, A. B. (2019). Energy efficient secure data collection with path-constrained mobile sink in duty-cycled unattended wireless sensor network. Pervasive and Mobile Computing, 55, 1-12.spa
dcterms.references[5] Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589-2607.spa
dcterms.references[6] Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589-2607.spa
dcterms.references[7] Zygowski, C., & Jaekel, A. (2020). Optimal path planning strategies for monitoring coverage holes in Wireless Sensor Networks. Ad Hoc Networks, 96, 101990.spa
dcterms.references[8] Han, G., Yang, X., Liu, L., Guizani, M., & Zhang, W. (2017). A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks. IEEE Transactions on Emerging Topics in Computing.spa
dcterms.references[9] Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2014). Superior path planning mechanism for mobile beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal, 14(9), 3052-3064.spa
dcterms.references[10] Magadevi, N., Kumar, V. J. S., & Suresh, A. (2018). Maximizing the Network Life Time of Wireless Sensor Networks Using a Mobile Charger. Wireless Personal Communications, 102(2), 1029-1039.spa
dcterms.references[11] Ma, M., Yang, Y., & Zhao, M. (2012). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE transactions on vehicular technology, 62(4), 1472-1483.spa
dcterms.references[12] Subramanian, C. B., & Balakannan, S. P. (2017, March). Optimized trajectory planning for mobile anchors in wireless sensor networks. In 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (pp. 1-5). IEEE.spa
dcterms.references[13] He, X., Fu, X., & Yang, Y. (2019). Energy-Efficient Trajectory Planning Algorithm Based on Multi-Objective PSO for the Mobile Sink in Wireless Sensor Networks. IEEE Access, 7, 176204-176217.spa
dcterms.references[14] Xia, F., Wang, L., Zhang, D., Zhang, X., & Gao, R. (2012). Ada-MAC: An adaptive MAC protocol for real-time and reliable health monitoring. In 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 203-208). IEEEspa
dcterms.references[15] El Fissaoui, M., Beni-hssane, A., Ouhmad, S., & El Makkaoui, K. (2020). A Survey on Mobile Agent Itinerary Planning for Information Fusion in Wireless Sensor Networks. Archives of Computational Methods in Engineering, 1-12.spa
dcterms.references[16] Viloria, A., Senior Naveda, A., Hernández Palma, H., Niebles Núẽz, W., & Niebles Núẽz, L. (2020). Electrical Consumption Patterns through Machine Learning. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012093.spa
dcterms.references[17] Viloria, A., Hernández Palma, H., Gamboa Suarez, R., Niebles Núẽz, W., & Solórzano Movilla, J. (2020). Intelligent Model for Electric Power Management: Patterns. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012032spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S187705092031797Xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.procs.2020.07.097


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal