Show simple item record

dc.creatorRomero Conrado, Alfonso Rafael
dc.date.accessioned2018-11-02T21:20:55Z
dc.date.available2018-11-02T21:20:55Z
dc.date.issued2018-04-11
dc.identifier.urihttp://hdl.handle.net/11323/83
dc.descriptionMaestría en Ingenieríaeng
dc.description.abstractEn esta investigación se presenta el desarrollo un algoritmo heurístico basado en los principios de búsqueda tabú para la solución del problema de lotificación multinivel con restricciones de capacidad, listas de materiales alternativas y entornos de coproducción, basado en la estructura del modelo de Planificación de Materiales y Operaciones Genéricas GMOP propuesto en el año 2013. El algoritmo propuesto utiliza el mecanismo de memoria a corto plazo (Lista Tabú) para la selección de Strokes alternativos para la fabricación de cada producto. La validación del algoritmo se realizó analizando la calidad y los tiempos de obtención de las soluciones. El algoritmo demostró potencial al alcanzar porcentajes de diferencia entre el 10% y 17% con respecto a las soluciones óptimas en los problemas de mayor tamaño y un equilibrio entre calidad y tiempos de solución problemas relativamente pequeños.spa
dc.description.abstractThis research shows the development process of a heuristic algorithm based on the principles of taboo search for the solution of the capacitated multilevel lot sizing problem with alternate bill of materials and co-production environments, based on the structure of the Generic Materials and Operations Planning model (GMOP). The proposed algorithm uses the short-term memory mechanism (Taboo List) for the selection of alternate strokes to produce each product. The validation of the algorithm was carried out analyzing the quality and the solution times. The algorithm demonstrated potential by reaching difference percentages around 10% and 17% compared with optimal solutions in large problems and a balance between quality and solution times when is used in relatively small problems.eng
dc.language.isospaeng
dc.publisherUniversidad de la Costaspa
dc.rightsAtribución – No comercial – Compartir igualeng
dc.subjectLotificacióneng
dc.subjectMultiniveleng
dc.subjectListas de materiales alternativaseng
dc.subjectCoproduccióneng
dc.subjectLista tabúeng
dc.subjectGMOPeng
dc.subjectLot sizingspa
dc.subjectMultileveleng
dc.subjectAlternate bill of materialseng
dc.subjectCoproductioneng
dc.subjectTabu listeng
dc.titleAlgoritmo heurístico basado en listas tabú para la planificación de la producción en sistemas multinivel con listas de materiales alternativas y entornos de coproduccióneng
dc.typeThesiseng
dcterms.referencesAfentakis, P., Gavish, B., & Karmarkar, U. (1984). Computationally Efficient Optimal Solutions to the Lot-Sizing Problem in Multistage Assembly Systems. Management Science, 30(2), 222–239. http://doi.org/10.1287/mnsc.30.2.222 Akartunalı, K., & Miller, A. J. (2009). A heuristic approach for big bucket multi-level production planning problems. European Journal of Operational Research, 193(2), 396–411. http://doi.org/10.1016/j.ejor.2007.11.033 Bahl, H. C., Ritzman, L. P., & Gupta, J. N. D. (1987). OR Practice--Determining Lot Sizes and Resource Requirements: A Review. Operations Research, 35(3), 329–345. http://doi.org/10.1287/opre.35.3.329 Batista, M. B. M., & Glover, F. (2003). Búsqueda Tabú. Inteligencia Artificial: Revista Iberoamericana de Inteligencia Artificial, 7(19), 29–48. Berretta, R., França, P. M., & Armentano, V. A. (2005). Metaheuristic approaches for the multilevel resource-constrained lot-sizing problem with setup and lead times. Asia-Pacific Journal of Operational Research, 22(2), 261–286. http://doi.org/10.1142/S0217595905000510 Billington, P. J., McClain, J. O., & Thomas, L. J. (1983). Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Management Science, 29(10), 1126–1141. Billington, P. J., McClain, J. O., & Thomas, L. J. (1986). Heuristics for Multilevel Lot-Sizing with a Bottleneck. Management Science, 32(8), 989–1006. http://doi.org/10.1287/mnsc.32.8.989 Bitran, G. R., & Gilbert, S. M. (1994). Co-Production Processes with Random Yields in the Semiconductor Industry. Operations Research, 42(3), 476–491. http://doi.org/10.1287/opre.42.3.476 Blackburn, J. D., & Millen, R. A. (1982). Improved Heuristics for Multi-Stage Requirements Planning Systems. Management Science, 28(1), 44–56. http://doi.org/10.1287/mnsc.28.1.44 Blackburn, J. D., & Millen, R. A. (1984). Simultaneous lot-sizing and capacity planning in multistage assembly processes. European Journal of Operational Research, 16(1), 84–93. http://doi.org/10.1016/0377-2217(84)90315-1 Boonmee, A., & Sethanan, K. (2016). A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry. European Journal of Operational Research, 250(2), 652–665. http://doi.org/10.1016/j.ejor.2015.09.020 Brahimi, N., Dauzere-Peres, S., Najid, N. M., & Nordli, A. (2006). Single item lot sizing problems. European Journal of Operational Research, 168(1), 1–16. http://doi.org/10.1016/j.ejor.2004.01.054 Bravo, D., Rodríguez, E., & Medina, M. (2009). Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes’ milk. Journal of Dairy Science, 92(10), 4805–4811. http://doi.org/10.3168/JDS.2009-2237 Buschkühl, L. (2008). Multi-level capacitated lotsizing with setup carryover. Kölner Wiss.-Verl. Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2010). Dynamic capacitated lotsizing problems: A classification and review of solution approaches. OR Spectrum (Vol. 32). http://doi.org/10.1007/s00291-008-0150-7 Caserta, M., & Rico, E. Q. (2009). A cross entropy-Lagrangean hybrid algorithm for the multiitem capacitated lot-sizing problem with setup times. Computers and Operations Research, 36(2), 530–548. http://doi.org/10.1016/j.cor.2007.10.014 Cesaret, B., Oǧuz, C., & Sibel Salman, F. (2012). A tabu search algorithm for order acceptance and scheduling. Computers and Operations Research, 39(6), 1197–1205. http://doi.org/10.1016/j.cor.2010.09.018 Chelouah, R., & Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research, 123(2), 256–270. http://doi.org/10.1016/S0377- 2217(99)00255-6 Chen, H. (2015). Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems. Omega, 56, 25–36. http://doi.org/10.1016/j.omega.2015.03.002 Choudhary, D., & Shankar, R. (2011). Modeling and analysis of single item multi-period procurement lot-sizing problem considering rejections and late deliveries. Computers & Industrial Engineering, 61(4), 1318–1323. http://doi.org/10.1016/j.cie.2011.08.005 Clark, A. R., & Armentano, V. A. (1995). A Heuristic for a Resource-Capacitated Multi-Stage Lot-Sizing Problem with Lead Times. The Journal of the Operational Research Society, 46(10), 1208. http://doi.org/10.2307/2584617 Coronado Hernández, J. R. (2015). Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain). http://doi.org/10.4995/Thesis/10251/61467 Crowston, W. B., & Wagner, M. H. (1973). Dynamic Lot Size Models for Multi-Stage Assembly Systems. Management Science, 20(1), 14–21. http://doi.org/10.1287/mnsc.20.1.14 Dell’Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop scheduling problem. Annals of Operations Research, 41(1–4), 231–252. Deuermeyer, B. L., & Pierskalla, W. P. (1978). A By-Product Production System with an Alternative. Management Science, 24(13), 1373–1383. http://doi.org/10.1287/mnsc.24.13.1373 Dixon, P., & Silver, E. A. (1981). A heuristic solution procedure for the multi-item, single-level, limited capacity, lot-sizing problem. Journal of Operations Management, 2(1), 23–39. http://doi.org/10.1016/0272-6963(81)90033-4 Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions. European Journal of Operational Research, 99(2), 221–235. http://doi.org/10.1016/S0377- 2217(97)00030-1 Garcia-Sabater, J. P., Maheut, J., & Marin-Garcia, J. A. (2013). A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. European J. of Industrial Engineering, 7(2), 119. http://doi.org/10.1504/EJIE.2013.052572 Gaury, A. E. G. A., Kleijnen, J. P. C., Pierreval, H., Gaury, E. G. A., Kleijnen, J. P. C., & Pierreval, H. (2016). A Multi-Class Multi-Level Capacitated Lot Sizing Model, 52(7), 789–799. Retrieved from http://www.jstor.org/stable/254215 Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190–206. http://doi.org/10.1287/ijoc.1.3.190 Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4–32. http://doi.org/10.1287/ijoc.2.1.4 Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., & Mohan, S. (2001). A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Management Science, 47(6), 851–863. http://doi.org/10.1287/mnsc.47.6.851.9813 Harris, F. W. (1913). How Many Parts to Make at Once. Operations Research, 38(6), 947–950. http://doi.org/10.1287/opre.38.6.947 Hindi, K. S. (1995). Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search. Computers and Industrial Engineering, 28(4), 701– 707. http://doi.org/10.1016/0360-8352(95)00027-X Hindi, K. S. (1996). Solving the CLSP by a Tabu Search Heuristic. The Journal of the Operational Research Society, 47(1), 151–161. http://doi.org/10.2307/2584259 Hung, Y.-F., & Chien, K.-L. (2000). A Multi-Class Multi-Level Capacitated Lot Sizing Model. The Journal of the Operational Research Society, 51(11), 1309. http://doi.org/10.2307/254215 Hung, Y. F., Chen, C. P., Shih, C. C., & Hung, M. H. (2003). Using tabu search with ranking candidate list to solve production planning problems with setups. Computers and Industrial Engineering, 45(4), 615–634. http://doi.org/10.1016/j.cie.2003.09.006 Kämpf, M., & Köchel, P. (2006). Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items. International Journal of Production Economics, 104(1), 191–200. http://doi.org/10.1016/j.ijpe.2006.02.008 Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365–378. http://doi.org/10.1016/S0305- 0483(03)00059-8 Karimi, B., Ghomi, S. M. T. F., & Wilson, J. M. (2006). A Tabu Search Heuristic for Solving the CLSP with Backlogging and Set-up Carry-over. The Journal of the Operational Research Society, 57(2), 140–147. http://doi.org/10.1016/j.ejor.2011.04.029 Kimms, A. (1996). Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets. International Journal of Production Research, 34(8), 2279–2298. http://doi.org/10.1080/00207549608905025 Kimms, A. (1999). A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Computers and Operations Research, 26(8), 829–848. http://doi.org/10.1016/S0305- 0548(98)00089-6 Kirca, O. (1990). An Efficient Algorithm for the Capacitated Single Item Dynamic Lot Sizing Problem. European Journal of Operational Research, 45, 15–74. http://doi.org/10.1016/0377-2217(90)90152-2 Kuik, R., Salomon, M., & van Wassenhove, L. N. (1994). Batching decisions: structure and models. European Journal of Operational Research, 75(2), 243–263. http://doi.org/10.1016/0377-2217(94)90072-8 Kuik, R., Salomon, M., Van Wassenhove, L. N., & Maes, J. (1993). Linear Programming, Simulated Annealing and Tabu Search Heuristics for Lotsizing in Bottleneck Assembly Systems. IIE Transactions, 25(1), 62–72. http://doi.org/10.1080/07408179308964266 Kurbel, K. E. (2013). MRP: Material Requirements Planning (pp. 19–60). http://doi.org/10.1007/978-3-642-31573-2_2 Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2014a). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42(1), 75–87. http://doi.org/10.1016/j.omega.2013.03.003 Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2014b). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing, 42(1), 75–87. http://doi.org/10.1016/j.omega.2013.03.003 Maes, J., & Wassenhove, L. Van. (1988). Multi-Item Single-Level Capacitated Dynamic LotSizing Heuristics: A General Review. The Journal of the Operational Research Society, 39(11), 991–1004. http://doi.org/10.2307/2583198 Maheut, J. (2013, May 13). Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. Universitat Politècnica de València, Valencia (Spain). http://doi.org/10.4995/Thesis/10251/29290 Maheut, J., & Garcia-Sabater, J. P. (2011). La matriz de operaciones y materiales y la matriz de operaciones y recursos, un nuevo enfoque para resolver el problema GMOP basado en el concepto del stroke. Direccion Y Organizacion, 45, 46–57. Maheut, J., Garcia-Sabater, J. P., Garcia-Sabater, J. J., & Valero Herrero, M. (2011). El Stroke y la Matriz de Operaciones y Materiales, nuevo enfoque para resolver el problema GMOP. In 5th International Conference on Industrial Engineering and Industrial Management (pp. 884–893). Cartagena. Retrieved from http://adingor.es/congresos/web/uploads/cio/cio2011/metodos_cuantitativos/884-893.pdf Nowicki, E., & Smutnicki, C. (1998). The flow shop with parallel machines: A tabu search approach. European Journal of Operational Research, 106(2–3), 226–253. http://doi.org/10.1016/S0377-2217(97)00260-9 Oliva San Martín, C. D., & Ramírez Guzmán, G. M. (2015). Algoritmo de tipo búsqueda tabú para un problema de programación de horarios universitarios vespertinos. INGE CUC, 9(2), 58–65. Retrieved from http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/7 Öner, S., & Bilgiç, T. (2008). Economic lot scheduling with uncontrolled co-production. European Journal of Operational Research, 188(3), 793–810. http://doi.org/10.1016/j.ejor.2007.05.016 Orlicky, J. (1975). Material Requirements Planning. New York, New York, USA: McGraw-Hill. Parsopoulos, K. E., Konstantaras, I., & Skouri, K. (2015). Metaheuristic optimization for the Single-Item Dynamic Lot Sizing problem with returns and remanufacturing. Computers and Industrial Engineering, 83, 307–315. http://doi.org/10.1016/j.cie.2015.02.014 Quadt, D., & Kuhn, H. (2008). Capacitated lot-sizing with extensions: A review. 4or, 6(1), 61– 83. http://doi.org/10.1007/s10288-007-0057-1 Rius Sorolla, G., Maheut, J., Coronado-Hernandez, J., & Garcia-Sabater, J. P. (2017). Lagrangian relaxation of the GMOP model. In 11th International Conference on Industrial Engineering and Industrial Management. Valencia (Spain). Retrieved from http://www.cigip.upv.es/cio2017/wp-content/uploads/2017/07/CIO17_Full_Programme.pdf Roca Molina, A. (2016). Construcción de algoritmo aplicando relajación lagrangeana para la obtención de un límite inferior para el problema de lotificación en sistemas multinivel en entornos de coproducción y listas de materiales alternativas. Universidad Tecnológica de Bolívar. Romero-Conrado, A. R., Suárez-Agudelo, E. A., Macías-Jiménez, M. A., Gómez Charris, Y., & Lozano-Ayarza, L. P. (2017). Experimental design for obtaining compost suitable for agricultural use from Kraft paper sludge. Espacios, 38(28). Sambasivan, M., & Yahya, S. (2005). A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers. Computers & Operations Research, 32(3), 537–555. http://doi.org/10.1016/j.cor.2003.08.002 SAP. (2017). Listas de materiales (PP-BD-BOM). Retrieved from http://help.sap.com/saphelp_470/helpdata/es/ea/e9bcc04c7211d189520000e829fbbd/frames et.htm Sifaleras, A., & Konstantaras, I. (2015). Variable neighborhood descent heuristic for solving reverse logistics multi-item dynamic lot-sizing problems. Computers & Operations Research, 1–8. http://doi.org/10.1016/j.cor.2015.10.004 Steinberg, E., & Napier, H. A. (1980). Optimal Multi-Level Lot Sizing for Requirements Planning Systems. Management Science, 26(12), 1258–1271. http://doi.org/10.1287/mnsc.26.12.1258 Toledo, C. F. M., de Oliveira, R. R. R., & Morelato França, P. (2013). A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging. Computers and Operations Research, 40(4), 910–919. http://doi.org/10.1016/j.cor.2012.11.002 Vazsonyi, A. (1954). The Use of Mathematics in Production and Inventory Control. I. Management Science, 1(1), 70–85. Retrieved from http://www.jstor.org.consultaremota.upb.edu.co/stable/2627076 Vidal-Carreras, P. I., Garcia-Sabater, J. P., & Coronado-Hernandez, J. R. (2012). Economic lot scheduling with deliberated and controlled coproduction. European Journal of Operational Research, 219(2), 396–404. http://doi.org/10.1016/J.EJOR.2011.12.020 Wery, J., Gaudreault, J., Thomas, A., & Marier, P. (2018). Simulation-optimisation based framework for Sales and Operations Planning taking into account new products opportunities in a co-production context. Computers in Industry, 94, 41–51. http://doi.org/10.1016/J.COMPIND.2017.10.002spa
dc.contributor.tutorCoronado Hernández, Jairo
dc.contributor.coasesorVisbal Acevedo, Renso Raul


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record