
Advances in Engineering Software 175 (2023) 103329

Available online 10 November 2022
0965-9978/© 2022 Elsevier Ltd. All rights reserved.

Research paper

Prediction based cost estimation technique in agile development

Shariq Aziz Butt a,*, Tuncay Ercan b, Muhammad Binsawad c, Paola-Patricia Ariza-Colpas d,
Jorge Diaz-Martinez d, Gabriel Piñeres-Espitia d, Emiro De-La-Hoz-Franco d,
Marlon Alberto Pineres Melo d,e, Roberto Morales Ortega d, Juan-David De-La-Hoz-Hernández e

a Department of Computer Science, University of South Asia, Lahore, Pakistan
b Department of Management Information Systems, Yasar University, Turkey
c Department of Computer Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia
d Department of Computer Science and Electronics, Faculty of Engineering, Universidad de la Costa, Barranquilla, 080002, Colombia
e Department of Systems Engineering, Universidad del Norte, Barranquilla, 081001, Colombia

A R T I C L E I N F O

Keywords:
Agile limitations
Agile project cost and time estimation
Estimation technique

A B S T R A C T

Agile has been invented to improve and overcome the deficiencies of efficient software development. At present,
the agile model is used in software development vastly due to its support to both developers and clients
resourcefully. Agile methodology increases the interaction between the developer and client to make the soft-
ware product defect-free. The agile model is getting to be a well-known life cycle model because of its particular
features and most owing is to allow changes at any level of the project from the product owner. However, on
other hand, this novel feature is a disadvantage of the agile model due to frequent change requests from the client
has increased the cost and time. To overcome cost and time estimation issues different cost estimation techniques
are being used in agile development but no one is pertinent for accurate estimation. Therefore, this study has
proposed a cost estimation technique. The proposed estimation technique is predictions-based and has different
categorizations of projects based on user stories complexities and the developer’s expertise. We have applied the
suggested technique to ongoing projects to find the results and effectiveness. We have used two projects with
different sizes and user stories. Both projects have different modules and developers with different expertise. We
have used the proposed estimation technique on projects and done a survey session with the teams. This survey
session’s main objective is to reveal the statistical findings of the proposed solution. We have designed the 12
hypotheses for statistical analysis.

1. Introduction

The agile software development model is new and essentially being
used in software development. It enables clients to make change re-
quests at any time during the project [1, 2]. As a result, module coor-
dination is prevalent within software companies. The agile paradigm, in
addition to having a great number of benefits and being widely used,
also has a few drawbacks. One of these drawbacks is the most visible
factor which constantly modifies the client’s requirement, causing the
task’s completion time and cost to increase. The expense and time in-
crease likewise impacts the industry image on the client. The company
can lose its client and the client resembles a resource for the organiza-
tion. There are cost and time estimation systems accessible to COCOMO I
yet this procedure isn’t valuable to understanding the issue from agile

development improvement. In this way, there is a need for a progres-
sively indigenous and precise estimation strategy or model [3–5]. The
author targets only the industries that are using the agile model for
software development. With this line of research, we have done the
research. This paper is an extended version of our previously published
paper in a journal. In our previous publication, we had done a survey
based on hypotheses, interview sessions, and meetings with develop-
ment teams. The team includes developers, project managers, and
software architects. In the last paper, we had done a comparison with
the existing techniques and in a survey, we got responses from the
participants regarding the estimation technique features, reliability, and
accuracy to estimate efforts. However, in the extended version, we have
visited software industries to apply the cost estimation technique to
projects [6–8]. The main difference between the previous version and

* Corresponding author.
E-mail address: shariq2315@gmail.com (S.A. Butt).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103329
Received 27 July 2022; Received in revised form 17 September 2022; Accepted 19 October 2022

mailto:shariq2315@gmail.com
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103329
https://doi.org/10.1016/j.advengsoft.2022.103329
https://doi.org/10.1016/j.advengsoft.2022.103329
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103329&domain=pdf

Advances in Engineering Software 175 (2023) 103329

2

the extended version is, lastly we had done a survey regarding the
proposed estimation technique and done a comprehensive study with
the existing estimation techniques but now we have applied the pro-
posed estimation technique to projects and found outcomes [9, 10].

2. Significance of study

Due to the frequent change requests from a client in agile method-
ology enhances client satisfaction, but on other hand, it also increases
the cost and time of project completion. The cause of the increase is
because of agile’s feature of change requests at any stage of the project/
module. The main issue with this feature is that the product owner i.e.
client controls the changes and requirements. Agile has different cost
estimation techniques but all have some shortcomings. These short-
comings do not make such techniques pertinent for agile efforts esti-
mation. Therefore, to overcome such shortcomings this study has
proposed a cost estimation method with categorizations. We have done a
survey study with the software teams and implemented the technique on
real projects. This finding shows that the suggested method is more
evaluable for effort prediction and calculates the more accurate cost and
project completion time.

3. Related works

3.1. Existing techniques

The changes impact the project’s achievement and fulfillment. In
agile software development (ASD) the project manager welcomes the
changes at any stage of the project [1, 13, 14]. The changes impact a task
from numerous points of view because the changes have risks related to
it as far as cost, time, and completion of the project. Then, over and over,
change in demand for one, two, or more modules affect the entire project
insufficiently because the Source Line of Code (SLOC) become increases
which ultimately increases the project’s size. As stated in the case study
the maintenance cost has become high due to changes from the client.
The study has examined the 2 studies as case samples and cost has
become increasingly on the case sample which was more complex in
code writing, cohesion in code, and changes in code modifications [38,
39, 42].

3.2. COCOMO I

The COCOMO I technique has been compared with the proposed
technique. The reason to select/use the COCOMO I rather than others
are:

The software industry’s people which we target are still using and
rating COCOMO I as compared to other estimation techniques. The
reason for adoption is mentioned below that still researchers and prac-
titioners are extending it.

The COCOMO is still in practice; researchers and practitioners are
extending and modifying it with different concepts to introduce new
effort estimation techniques as mentioned in these papers [14–17]. All
the papers are published in IEEE publisher. There are also so many
published articles based on COCOMO and published in reputed pub-
lishers [18–20].

Barry Boehm presented a model first time in 1981 called the
COCOMO I model. The COCOMO represents the Constructive Cost
Model [21–23]. In this condition, the KLOC/KDSL is speaking to the
thousands of source lines of code.

Equations:
The equations of the COCOMO models are:
Effort=MM=a (KDSL/KLOC)b
Time=TDEV=2.5 × MM^c
Software Cost = MM × per person salary per month.
Organic Mode
The natural improvement method of the COCOMO I model is little in

size, less inventive, stable, and not a tight due date. It applies to the
undertaking with the size of the source line of code being between 2-50
KLOC. It is the scope of the code of Organic mode [24, 25].

Semi-Detached Mode
The semi-segregated mode is the second method of improvement in

the COCOMO I model. It is medium in size, inventive, due date and the
advancement is normal. The scope of the size of the source line of code of
this mode is between 50-300 KLOC [10, 26].

Embedded Mode
The Embedded Mode is the third method of the COCOMO I model. It

is huge; profoundly inventive, tight due date, and the improved condi-
tion is unpredicTable The scope of the source line of code is >300 KLOC
[27, 28].

3.3. Function point analysis

Software Change Effort Estimation (SCEE) is necessary not only
during the process of software development as well as throughout the
software maintenance process. Function Point Analysis (FPA), is used to
calculate the amount of work required to estimate the software needs
and wants of customers throughout the software maintenance cycle.
Software archives are in a steady state during the maintenance stage
[42]. Equation 1 illustrates how the FPA technique calculates the
Function Points (FPs) of a product by merging Unadjusted Function
Points (UFP) with Value Adjustment Factor VAF. UFPs are the total of all
activities, including Internal Logical Files (ILFs), External Interface Files
(EIFs), External Output Files (EOs), External Queries (EQs), and External
Output Files (EIs) with their respective complexity levels (low, average
and high). 14 General Unit Parameters can be used to determine the
Value Adjustment Factor (VAF) (GSC) [12].

FPs = UFP*VAF (1)

3.4. Top-down or bottom-up estimation

Experts in software development effort assessment may use top-
down or bottom-up approaches, i.e., they may base their assessments
of the overall effort on the characteristics of the project in its entirety
and disperse people across project tasks (top-down), or they could
determine the overall effort prediction as the cumulative of the esti-
mates for each project task (bottom-up). The study’s emphasis on the
expert estimating method was motivated by the prevalence of expert
estimation, the absence of compelling information in support of formal
estimation techniques, and the lack of knowledge of the characteristics
of expert estimation procedures. The researchers looked at the top-down
and bottom-up estimating procedures for the 2 categories of software
development process expertise estimation strategies [15].

3.5. Price-to-win estimation

In this method, the client’s budget greatly impacts how much the
software project is estimated to cost. The cost of the project whatever the
client is willing to spend on it, with the client’s budget taking prece-
dence over the software’s functioning. This strategy is not advised since
it places more emphasis on the client’s capability and budget than it
does on the functioning of the software. Low accuracy is assigned
because accuracy differs greatly depending on the client’s budget. It is
not a useful method because it could delay development and deliveries
and need the development team to put in extra hours. The client’s
budget and person-month ratio are used to validate this method [11].

3.6. Artificial neural network

Due to its propensity for arbitrary efficiency, neural networks are
commonly employed as a technique for software effort predictions. Due
to their learning capacity, artificial neural networks (ANN) have shown

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

3

to be extremely effective in a wide range of real-world scenarios. For
instance, ANN learning algorithms decide on weight alterations to
enhance the cost function. The MRE across the present ANN output and
the anticipated (target) outcome is the most effective but least
frequently employed cost function because it can result in the lowest
cost [17].

3.7. Support vector machine

Software effort estimation is the practice of calculating the amount of
work necessary to create a software product (SEE). Support vector
regression (SVR), a machine learning approach, is one of them that has
been applied for cross-company (CC) large datasets effort prediction.
Because SVR is capable of adapting to various and heterogeneous bits of
data, it is useful [18].

This study has done a detailed literature analysis of existing works
and the problem statement has supported the detailed related effort
estimation techniques, some of these techniques help and motivate in
proposing a new effort estimation technique. These techniques are
Scrum methodology, function point, expert analysis, and Delphi tech-
nique as shown in Table 1. These all techniques have several limitations
to measure the accurate cost and time for agile software development
with change requests from the client [8–11]. Table 1 is describing the
cost estimation techniques and adopted features for suggesting a new
estimation technique.

3.8. Planning poker

Team members talk about cost and effort estimation using this
method. Every team member participates in the conversation and shares

their objectives for the estimation method because each participant has
different criteria for estimation. Following a brief discussion, the team
members compared each member’s criteria to conclude the estimating
procedure and requirements. To assure team member contact, utilize
this strategy. This method is less useful in the software business and has

Table 1
Motivational Techniques.

Techniques Features adopted

Function Point Low, Average, and High Categorizations
Expert Opinion Professional Judgment About Project
Scrum Methodology Daily Meeting Session
Delphi Technique Prediction about Software

Fig. 1. Existing estimation techniques in software development [10].

Fig. 2. Module Info Finder

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

4

less empirical support for accuracy. This method cannot be used to make
predictions [32–35].

3.9. Industrial surveys

In this, we visited several software industries to fill out the ques-
tionnaire for the proposed technique. We have arranged meeting ses-
sions and interviews with the developers, software architects, and
project managers to get the outcomes of the project using the proposed
estimation technique. This has revealed that the proposed estimation
technique overcomes the issues of agile software development. The re-
sults of the meeting session got through the questionnaire (Question-
naire template as shown in the Appendix) [10,12].

4. Proposed model

We have proposed an estimation technique as a solution for software
development to remove the issues. The proposed technique encourages
the estimator to appraise the precise expense and time due to again and
again changes that originate from the client. The technique is clarified
through screens [7]. The author gave the name as Shariq Screen Model
(SS Model) technique. Fig. 1

Screen1:
The estimation begins in the model during the survey session. The

estimation session has appeared in Fig. 2. The effort estimator talks
about the entire activities with the product engineers, and group pio-
neers and discovers the module’s size, cost, timeframe, and exertion.
The fundamental motivation behind the session is to share the devel-
opment experience of software engineers, team managers with one
another, and based on that experience, they can discover the efforts of
the project. In the session’s meeting, the individuals classify the modules
into three kinds Easy, Average, and Complex modules of the software
product. In modules (Easy, Average, and Complex) the project manager
or estimator can choose the cost and time of the project. The session
participants provide information regarding that how many modules
have been developed before related to the present project and how many
modules have not been worked on before similar to the current project.
What no of the modules are new for the team? This survey session data
helps the team to find the accurate time, effort, and cost in the survey
meeting session [10, 12, 15].

Fig. 2 is giving the complete information of the review session
meeting including team member names, designation, years of experi-
ence, salary, and project type has been decided in the review session
means that this project falls under the categories of easy, complex, and
tough. The "Previous Related Work" means a team member writes his/
her previous completed project experience similar to the current project
such as project name, completion time, and team size to complete that
project. All information in the Module Info Finder helps the project
manager to estimate the accurate project details.

4.1. Module’s categories

4.1.1. Easy
The primary classification of the module is the simple class that

implies the most extreme no of modules has been already developed in
another project as like existing ones. The product design simply needs to
replace every one of such modules with the present application or they
need some minor improvements to meet current necessities as appeared
in Fig. 3. The 80% simple and 20% extreme is the simple module class. In
the model, 80% implies that 80% of work has been done as of now in
other applications, and staying 20% is new for developers [10, 18, 25].

4.1.2. Average
The secondary classification is the Average module which implies

normal quantities of modules have been developed in another project,
the product design simply needs to replace these modules with the
present application’s modules or they need some changes as per the
current project’s requirements. In the normal class module, the quantity
of recently developed modules is not exactly like simple module classi-
fication. As stated in Fig. 2 60% is simple and 40% is complex. In the
model, 60% implies that 60% of work has been done on other project/s,
and 40% is new for the team. The product developers need to put effort
into this 40% part of the project [10, 18, 25].

4.1.3. Difficult
The third classification is the difficult modules which means the

Fig. 3. Review Session Meeting [10].

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

5

entire project is new for developers. They have never developed any
kind of such project earlier. They have no experience identified with the
present project. The project is 100% difficult and new for the team. The
developers need to spend a lot of effort and time to finish the projects
and they need more resources to meet the requirements. The time, ef-
forts, and cost of the project choose in the audit session [10, 18, 25].

All the categories and their values such as 20%-80%, 40%-60%, and
100% are decided after reviewing estimation techniques and discussion
with developers and team leaders.

The total cost of the project can calculate by:
Total cost = Average Cost + Expected Cost
•Average cost
Here the average cost is representing the cost of previously devel-

oped modules in another application but is similar to a current project. It
adds to the total cost of the current project after some changes and
modifications to current project requirements [39–41].

•Expected cost
The expected cost is the cost decided in the review session by the

participants in the session.
The total time of the project can calculate by
Total time= Average Time +Expected Time
•Average time
The average time is the completion time of the previously developed

modules in another application but is similar to a current project. It adds
to the total cost of the current project after some changes and modifi-
cations to current project requirements.

For Average Category project:
Total cost = Average Cost + Expected Cost + 15% ….1

Total time = Average Time + Expected Time +15%2
For Difficult Category project:
Total cost = Expected Cost + 30% ……….…3
Total time = Expected Time +30% …………4
In Eqs. 1–4 the 15% and 30% qualities are included by the project

leader after the result of the Review Session. The objective of adding
values is to remove the risk of project failure and complete the risks
regarding time and effort increase. When the cost and time chosen in a
session have been decided by the software developers then the project
manager takes a total of 15% and 30% of the decided values to the
definite cost and time secure tasks of the project.

Screen 2
This screen of the framework can help the estimator to predict the

effort and size of the module to minimize the risk. Suppose when the
change request comes after some modules have been developed then the
project manager can estimate or predict the effort and size of the
remaining modules with the change request. As shown in Fig. 3 modules
1, 2, and 3 have been developed with some source line of code, time, and
cost without a change request but module 4 has a change request from
the client, therefore, its size, effort, and impact can measure with the
cost and size of already developed modules (1, 2 and 3) as shown in
Fig. 3. After that, the estimator can predict the change request’s time and
cost from the already developed module’s data. In this paper, we apply
this screen in project 3 implementation. Given below are some param-
eters with an example for an estimator to estimate and predict the effort
of the remaining modules as mentioned in Table 2.

Average of the size of the remaining modules:
̅̅
SLOC of completed moduleCompletednoofmodule

√
= Average size of the

remaining module.
In this phase, the project manager or meeting session members can

calculate the size of the remaining modules of the project by the above-
mentioned equations.

Screen 3
Screen 3 is managing the significant part when the venture

advancement begins the group build up the primary module and sends it
to the client for criticism and at the main module the change solicitation
originates from the client then for the engineers and chief it is hard to
appraise the size of current change solicitation and its effect on
consummation time and cost of the rest of the modules in the task. In this

Table 2
Presenting the working of screen 2.

Parameters Example

Total modules of software 6
No of the completed module 2
SLOC of the completed module 20 KLOC
Remaining module 4
Total time completion of the completed module 4 months

Fig. 4. Screen 1.

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

6

way to deal with this, an estimator can utilize screen 3 to assess the size
of the changes, the fulfillment time required, cost, and impact of prog-
ress changes in all tasks as appeared in Figs. 4 and 5. In Fig. 4 the project

divides into modules, each module has some effort (Time and Cost)
decided in the review session. Therefore when the change request comes
at the first module then the estimator can predict its impact on other
modules and also can analyze whether the change has to be fulfilled or
not. After analyzing the estimator decides whether to approve the

Fig. 5. Screen 2

Table 3
Presents the working of screen 3.

Parameters Example

Total no of modules 5
Total time of the modules 12 months
Divide the time per module 2.4 months
Divide Effort per module 3 persons per month

Table 4
Adopted software industries.

Companies Projects No.
Employees

Type of
Services

Location Sub-
Locations

Company
1

1 200-250 Govt. software
applications

Pakistan Australia

Company
2

2 200-220 IT Solutions
Consultancy

Pakistan UK

Table 5
Summary of Project 1.

Company Company 1

Project Size Medium
Project Nature Pension management System
Team Size 6
KLOC 21
No. Modules 5
Completion Time 23 months
Already Developed Modules 2
Project Cost 12650 $

Table 6
Summary of Project 2.

Company Company 2

Project Size Medium
Project Nature Store Stock Entry
Team Size 4
KLOC 15
No. Modules 3
Completion Time 15.6 months
Already Developed Modules 0
Project Cost 91000 $

Fig. 6. Number of modules in project 1.

Fig. 7. Number of modules in project 2.

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

7

change request or not. The estimator can prioritize the change requests
as well. This screen helps the estimator to predict the effort for any
change and its impact on the whole project. The parameters for this
screen are shown with an example as mentioned in Table 3.

Screen 4
The screen is clarifying who is the suitable team member in the group

to deal with the change request and difficult module of the project.
At the point when the venture begins then in the audit session the

project’s difficult module choose. After the revelation of these modules
next errand is to discover a designer to work on these modules. Give
every one of these modules to the most profoundly experienced designer
in the group because of high experience and proficient code composing
that make engineer novel from the different low experienced developers.
The highly experienced developer/s deals with all change requests in the
project [10, 29]. The selection of the highest experienced developer can
be from the review session form mentioned in "Module Info Finder” the
Manager/Estimator can also prioritize developers according to
experience.

Fig. 3 explains the review session meeting, Here D is representing the
Developer and T is representing Team Lead and P is representing the
Project Manager, and Fig. 4 is explaining the overall picture of the
proposed technique. Fig. 4 is explaining screen 2 and Fig. 5 is explaining
screen 3.

4.1.4. Implementation
To evaluate the proposed technique different projects have been

used. This technique has been applied to 2 software houses project data
as stated in Table 4.

Project 1
Project 1 is a medium project type conducted for Company 1. The

company is developing a Pension Management System application as
described in Table 5.

Project 2
Project 2 is a large project type conducted for Company 2. The

company is developing a Store Stock Entities application as described in
Table 6.

Project 1
The project’s 1 five modules are mentioned in Fig. 6:

1 User Login: The user can view his/her pensions and can get the up-
date on upcoming pensions etc.

2 Data Entry: The data entry operator has to enter the data about all
current and new pension holders.

3 Administration: Admin can view, update and delete any user History.
4 Cases: In the project, the phase of the case is related to the types of

pension holders.
5 City Officer: The City officer can view all the data and pensions

holders with a single click.

Project 2
The project’s 2 modules are mentioned in Fig. 7:

1 Stock Record: The Stock Record keeps the record of entities in store.
2 Data Entry: The data entry operator enters the entity’s data in stock.
3 Balance: The balance phase shows the total balance in the form of

cash (sale $ purchase).

Most Change Requests on Project’s Modules
In project 1 the change requests come from the client on modules are:

1 Administration: The admin facing that the updated data of some
clients are not showing. Deletion and updating of data are not done.

2 User Login: In this module, the user is facing that some of his/her
previous record or upcoming record is missed or someone else record
is showing in their profile.

3 City Officer: The city officer when wants to see all cases of pensions
then some cases are missed but entered by the data entry operator.

In project 2 the change requests come from the client on modules are:

1 Stock Record and Balance: The owner is facing that there is a dif-
ference between some entities’ data in the stock record and the
balance of entities is not match.

These are the reason these most change requests come from the client
on the number of modules.

5. Results and analysis

Project 1

Fig. 8. Review session with the team for effort estimate.

Fig. 9. Outcome of project.1 regarding changes.

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

8

Project 1 is implemented in Company 1 on the pension management
application. The proposed model is used to control the cost and time
increment due to again and again change requests.

The cost and time of the project had decided after the review session
in Company 1 as the proposed model was first to arrange the review
session shown the Screen 1. In this project’s review, session members
were the project manager, 4 developers, and 3 team leaders with low
and high development experience shown in Fig. 8.

The decided cost, completion time, effort, previously completed
modules, SLOC, Team Size, etc. are mentioned in the Implementation
Section. In the Implementation section that Project 1 has already
developed 2 modules in some other projects similar to existing ones. The
developers just have to make some minor changes to meet the current
requirement and replace these 2 modules in the current project. Hence
Project 1 falls under the Average Category by the proposed model’s
categories where the project is 60% easy and 40% tough according to the
proposed model. Now the proposed model Screen 2 has been used here
to estimate the cost, time, effort, and SLOC and filled the Module Info
Finder template shown below.

Filled Review Session Meeting form for project 1.
Name XYZ
Designation Principle Architect
Experience 10 Years
Salary 150 K
Project Type Average Category
Previous Related Work to Current Project If Any

Project Detail Employee Management
Duration Time 18 Months
Team Size 6

Total modules of software 5
No of the completed module 2
SLOC of the completed module 8KLOC
Remaining module 3
Total time of completed module 5.5

Average of the 2 of the remaining modules:
̅̅
SLOC of completed moduleCompletednoofmodule

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8 KLOC2

√
= 4 KLOC per

Module
Now the total time and cost can estimate by use of the Average cost

and time estimation Formulas:
Total cost = Average Cost + Expected Cost + 15%.
Total cost = 3000 + 8000 + 1650 = 12650 US $
Total time = Average time + Expected time + 15%.
Total time = 5.5 + 14.5 + 3 = 23 Months
Then, change requests come from the client on 3 modules city officer,

administration, and User Login as stated in Fig. 9.
The SLOC code of the whole project had become increased which

ultimately increased the project’s cost, effort, and completion time as
stated in Table 7.

Hence the total project 1 values that are required to complete it with
the change request come from the client as shown in Table 8:

Project 2
Project 2 is also implemented in Company 2. The developers have to

develop the Stock Entity Application. The application is new for the
developers and did not work before this time on such type of application.
The application is new and tough for developers therefore after the re-
view session the team decided on cost, effort, completion time, SLOC,
etc. as mentioned in the project’s description section. The project falls in
the difficult category.

The formula from the proposed model used for this project is:
For Difficult Category project:
Total Cost = Expected Cost + 30%.
Total Cost = 7000 + 2100 = 9100.
Total time = Expected Time +30%.
Total time = 12 Months + 3.6 Months = 15.6 Months.
Here the Expected time and cost had been decided by the developers

and the 30% accumulative value was added by the project manager to
secure the project.

In project 2 most change requests that come from the client were on
the Stock and Balance module. But the SLOC, Cost, and Time increased
from the final values by the developers and project manager but the
increment was very low and did not impact the project. The total
analysis of projects 1, and 2 are shown in the graph. The Postmortem
analysis graph is explaining the final result and analysis of all projects.
Project 1 and 2 has some fault rate when the change request comes from

Table 7
Outcome of development of Project 1.

No. Modules 3

Average SLOC 3000
Cost Required 1908 US $
Months for Completion 5.5

Table 8
Summary of Project.

Actual Final Incremental

KLOC 21 24 3
Time 23 months 28.5 months 5.5 months
Cost 12650 $ 14558 $ 1908 $

Table 9
Postmortem Analyses of Techniques.

Features Techniques
COCOMO SS Model

Project Suitable Not Suitable for Agile Suitable for Agile
Agile Software

Development
X √

Client Satisfaction Less High
Estimation Based On SLOC Review Session
Preliminary Data

Required for
estimation

√ Only Source Line of
Code

√ Project’s Detail i;e
Project type, team size, etc

Modification In the initial stage only
when the project start

The runtime can do during
project development

Knowledge Required Product and Domain Product and Domain
Extendibility √ x
Project management

involvement
x √

Accuracy of Estimation X √

Fig. 10. Overall changes effects on projects.

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

9

the client but the proposed model has less fault rate with the change
request coming from the client rather than the COCOMO I model. Hence
the COCOMO I model is not ingenious for agile software development. It
needs some amendments to deal with the change request from the client
side [42–44].

Postmortem Analysis of Cost, Time, SLOC in Projects is presented in
Table 9 and Fig. 10.

6. Statically analysis

We have done a statistical analysis of the existing proposed estima-
tion technique with the use of variables and survey sessions with the
software industries.

6.1. Variables and assessments

In the research model, there are different types of variables that in-
fluence software development activities. It is a process influenced by six
independent variables, three dependent variables, and one moderator
variable. The questionnaire was used to determine six independent
variables. Several questionnaires on a Likert scale rating are performed
to assess their impact. The set of questions is intended to ask from the
beginning of the questionnaire to examine the moderating variable
software industries’ size and environmental factors as the Fig. 11 is
presenting the dependent and independent variables [30, 31]. We have
used SPSS as a tool for data analysis and statistical results.

Fig. 11. Hypothetical model of variables.

Table 10
Specification of data, survey objectives, data sourcing, and data collection.

Objectives To identify the main confronts and research objectives
in agile cost estimation techniques.

Subject Area Cost estimation
Main Research

Question
What are the principal difficulties and research
openings in cost estimation techniques?

More Specification
Subject Area

Cost issues in agile

Interference Surveys, definition, and other types of research related
to agile research.

Type of Data Questionnaires
How Data Was Acquired Analyst develop Questionnaire for analysis
Data Format Analyzed and statistical data
Experimental Factors The data model consisted of software developers who

mostly are software development persons.
Data Source Location Software industries

Table 11
Surveyed Industries

Goal Adoption of cost estimation technique in Industries.
Targeted Audience Software Developers, Team Leaders, & Project Managers.
Data Collection Mode Questionnaire & Interviews
No Industries for Survey 2
Total Questions 12
Participants 25

Table 12
Hypotheses

HQ 1 Is the SS method helpful to manage the cost and time?
HQ 2 Is Review Session an efficient way to manage the project?
HQ 3 Can project cost and time be accurately estimated in the review session?
HQ 4 Do you think that the SS method can control the cost and time with the

frequent change of requests?
HQ 5 Is the SS method easy to implement?
HQ 6 Do you think that the manager and client’s relationship becomes enhanced

through the SS method?
HQ 7 Can the SS method increase the company’s business and reputation?
HQ 8 Are the SS method’s all screens practical and easy to use?
HQ 9 Can the SS method’s all screens control the cost and time to increase?
HQ

10
Is the SS method helpful for the project manager?

HQ
11

Is the SS method suitable for all SDLC models?

HQ
12

Can the SS method remove the cost and time issue from the Agile model?

Table 13
Variable alpha.

Dependent Variable Cronbach’s Alpha Composite Reliability (AVE)

Easy .607 .725 .72
Average .721 .818 .78
Tough .604 .608 .56

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

10

6.2. Data gathering

The questionnaires are designed by analyzing previous survey
studies in the same field. Participants are asked a series of questions.
Participants are asked broad questions related to the project estimation
in the first phase of the survey. Assess the participant’s designation to
determine whether he or she is a manager or a developer. There are also
some basic inquiries concerning their upcoming final product [32].
Table 10 is describing the data specification and survey objectives.
Table 11 is presenting the survey industries and Table 12 is stating the
hypotheses.

Because the questionnaire is slightly different from the previous one,
a reliability test is required to ensure the questionnaire’s accuracy. The
degree to which a measurement model generates consistent and reliable
outcomes is known as reliability. Cronbach’s alpha coefficient is also
called Alpha (α). It has many levels of sufficient outcomes. A depend-
ability level of 0.7 is regarded as satisfactory. Cronbach’s alpha is used
for all independent variables. Most of the variables are greater than 0.5
as is shown in Table 13.

The validation of the hypothesis presented is shown in the Table 14.
Among the independent and dependent variables, multiple bivariate
tests are applied [34].

Multiple bivariate co-relation is used to test hypotheses from 1 to 6.
The concept of bi-variant co-relation is used to examine the correlation
between the two variables. It has a range of values from +1 to -1. +1
there is no relationship at zero. All of the factors in our study had a
positive relationship. All of the variables are positively related to one
another. And the independent variables are being used to examine their
relationships. We conducted both zero-order and partial correlation
analyses in Table 14 [35–37].

7. Conclusion

Agile has been invented to improve and overcome the deficiencies of
efficient software development. At present, the agile model is used in
software development vastly due to its support to both developers and
clients resourcefully. COCOMO I is a famous cost estimation procedure
however didn’t ingenious for agile development when frequent change
request comes from a client. It ultimately increases the cost and time of
the project. This increase affects the budget and productive software
development. There are different cost estimation techniques in software
development but all have deficiencies that make them less efficient. Due
to such reasons, this study has proposed a cost estimation technique. The
proposed estimation technique is predictions-based and has different
categorizations of projects based on user stories complexities and the
developer’s expertise. We have applied the suggested technique to
ongoing projects to find the results and effectiveness. We have used two
projects with different sizes and user stories. Both projects have different
modules and developers with different expertise. The outcomes of the
project development stated that the proposed technique is valuable
more than the existing techniques because it categorized projects on
basis of the developer’s experience.

Agile development needs an increasingly precise and numerical
model to appraise the cost, time, exertion, and culmination time of the
task. The product advancement with enormous scale ventures and with
other SDLC models like the cascade, and winding likewise required
estimation Systems to help these sorts of development.

Author’s contribution

All authors are contributed equally.

Declaration of Competing Interest

The authors declare that they have no Conflict of interest.

Data Availability

No data was used for the research described in the article.

Appendix

Table 14
Independent variables.

Predictive variables Overall project
success

Perceived
Project
Success

Organizational
performance

Multiple
R

R2 B SE ß t

Change request 0.67 0.38 0.41 0.48 0.46 0.27
The effort required for the

user story
0.64 0.60 0.55 0.62 0.24 0.47

Predictive measures 0.72 0.50 0.34 0.35 0.45 0.64
Time required for user

story
0.57 0.61 0.49 0.54 0.31 0.54

Developer’s SLOC 0.50 0.52 0.60 0.60 0.20 0.28
Expert judgments 0.75 0.61 0.34 0.30 0.37 0.55

(continued on next page)

S.A. Butt et al.

Advances in Engineering Software 175 (2023) 103329

11

References

[1] Kuhrmann M, Tell P, Hebig R, Klunder JAC, Munch J, Linssen O, Richardson I.
What makes agile software development agile. IEEE Trans Software Eng 2021.

[2] Khalid A, Butt SA, Jamal T, Gochhait S. Agile scrum issues at large-scale distributed
projects: scrum project development at large. Int J Softw Innov (IJSI) 2020;8(2):
85–94.

[3] Kaim R, Härting RC, Reichstein C. Benefits of agile project management in an
environment of increasing complexity—a transaction cost analysis. Intelligent
decision technologies 2019. Singapore: Springer; 2019. p. 195–204.

[4] Khmelevsky Y, Li X, Madnick S. Software development using agile and scrum in
distributed teams. In: 2017 Annual IEEE International Systems Conference
(SysCon). IEEE; 2017, April. p. 1–4.

[5] Rodríguez P, Haghighatkhah A, Lwakatare LE, Teppola S, Suomalainen T, Eskeli J,
Oivo M. Continuous deployment of software intensive products and services: a
systematic mapping study. J Syst Softw 2017;123:263–91.

[6] Rasheed A, Zafar B, Shehryar T, Aslam NA, Sajid M, Ali N, Khalid S. Requirement
engineering challenges in agile software development. Math Probl Eng 2021:2021.

[7] Ramessur MA, Nagowah SD. A predictive model to estimate effort in a sprint using
machine learning techniques. Int J Inform Technol 2021;13(3):1101–10.

[8] Obilor NA, Chibuike AAOAB, Donatus NO. Constructive cost model II metrics for
estimating cost of indigenous software. Int J Adv Eng Res Sci 2021;8:7.

[9] Butt SA, Jamal T. Frequent change request from user to handle cost on project in
agile model. Proc Asia Pacific J Multidiscipl Res 2017;5(2):26–42.

[10] Chirra SMR, Reza H. A survey on software cost estimation techniques. J Softw Eng
Applic 2019;12(06):226.

[11] Shah J, Kama N. Extending function point analysis effort estimation method for
software development phase. In: Proceedings of the 2018 7th International
Conference on Software and Computer Applications; 2018, February. p. 77–81.

[12] Venkatesh V, Thong JY, Chan FK, Hoehle H, Spohrer K. How agile software
development methods reduce work exhaustion: Insights on role perceptions and
organizational skills. Inform Syst J 2020;30(4):733–61.

[13] Kaur I, Narula GS, Wason R, Jain V, Baliyan A. Neuro fuzzy—COCOMO II model
for software cost estimation. Int J Inform Technol 2018;10(2):181–7.

[14] Jørgensen M. Top-down and bottom-up expert estimation of software development
effort. Inform Softw Technol 2004;46(1):3–16.

[15] Jorgensen M. Relationships between project size, agile practices, and successful
software development: results and analysis. IEEE Softw 2019;36(2):39–43.

[16] Rankovic N, Rankovic D, Ivanovic M, Lazic L. A new approach to software effort
estimation using different artificial neural network architectures and Taguchi
orthogonal arrays. IEEE Access 2021;9:26926–36.

[17] Villalobos-Arias L, Quesada-López C, Guevara-Coto J, Martínez A, Jenkins M.
Evaluating hyper-parameter tuning using random search in support vector
machines for software effort estimation. In: Proceedings of the 16th ACM
International Conference on Predictive Models and Data Analytics in Software
Engineering; 2020, November. p. 31–40.

[18] Rygge H, Jøsang A. Threat poker: Solving security and privacy threats in agile
software development. In: Nordic Conference on Secure IT Systems. Cham:
Springer; 2018, November. p. 468–83.

[19] Nhung HLTK, Hoc HT, Hai VV. A review of use case-based development effort
estimation methods in the system development context. In: Proceedings of the
Computational Methods in Systems and Software; 2019. p. 484–99.

[20] Shekhar S, Kumar U. Review of various software cost estimation techniques. Int J
Comput Applic 2016;141(11):31–4.

[21] Dalal S, Dahiya N, Jaglan V. Efficient tuning of COCOMO model cost drivers
through generalized reduced gradient (GRG) nonlinear optimization with best-fit
analysis. Progress in Advanced Computing and Intelligent Engineering. Singapore:
Springer; 2018. p. 347–54.

[22] Kumar KH, Srinivas K. Preliminary performance study of a brief review on machine
learning techniques for analogy based software effort estimation. J Amb Intell
Human Comput 2021:1–25.

[23] Aizaz F, Janjua UI, Zafar H, Khan JA, Kazim I. An empirical investigation on
software cost estimation techniques and barriers on agile software development in
software industry of Pakistan. In: 2021 International Conference on Frontiers of
Information Technology (FIT). IEEE; 2021, December. p. 194–9.

[24] Sánchez R, Pinto-Roa DP. A new approach to software effort estimation using
linear genetic programming. Proceed Ser Braz Soc Comput Appl Math 2018;6(1).

[25] Sakhrawi Z, Sellami A, Bouassida N. Support vector regression for enhancement
effort prediction of Scrum projects from COSMIC functional size. Innov Syst Softw
Eng 2022;18(1):137–53.

[26] Kaushik A, Tayal DK, Yadav K. The role of neural networks and metaheuristics in
agile software development effort estimation. Research Anthology on Artificial
Neural Network Applications. IGI Global; 2022. p. 306–28.

[27] Boehm BW. Software cost estimation meets software diversity. In: Software
Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference
on. IEEE; 2017, May. p. 495–6.

[28] Przybylek A, Zakrzewski M. Adopting collaborative games into agile requirements
engineering. In: 13th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE’18); 2018. https://doi.org/10.5220/
0006681900540064.

[29] Zhang Z. The benefits and challenges of planning poker in software development:
comparison between theory and practice (doctoral dissertation. Auckland
University of Technology; 2017.

[30] Przybylek A, Albecka M, Springer O, Kowalski W. Game-based Sprint
retrospectives: multiple action research. Empir Softw Eng 2022;27. https://doi.
org/10.1007/s10664-021-10043-z.

[31] Khuat TT, Le MH. A novel hybrid abc-pso algorithm for effort estimation of
software projects using agile methodologies. J Intell Syst 2018;27(3):489–506.

[32] Menzies T, Yang Y, Mathew G, Boehm B, Hihn J. Negative results for software
effort estimation. Empir Softw Eng 2017;22(5):2658–83.

[33] Hamid M, Zeshan F, Ahmad A, Ahmad F, Hamza MA, Khan ZA, Aljuaid H. An
intelligent recommender and decision support system (IRDSS) for effective
management of software projects. IEEE Access 2020;8:140752–66.

[34] Lee DH, Chang IH, Pham H, Song KY. A software reliability model considering the
syntax error in uncertainty environment, optimal release time, and sensitivity
analysis. Appl Sci 2018;8(9):1483.

[35] Silhavy R, Silhavy P, Prokopova Z. Using actors and use cases for software size
estimation. Electronics 2021;10(5):592.

[36] Khan SA, Alenezi M, Agrawal A, Kumar R, Khan RA. Evaluating performance of
software durability through an integrated fuzzy-based symmetrical method of ANP
and TOPSIS. Symmetry 2020;12(4):493.

[37] Lee DH, Chang IH, Pham H. Software reliability model with dependent failures and
SPRT. Mathematics 2020;8(8):1366.

[38] Plebankiewicz E, Meszek W, Zima K, Wieczorek D. Probabilistic and fuzzy
approaches for estimating the life cycle costs of buildings under conditions of
exposure to risk. Sustainability 2019;12(1):226.

[39] Sahu K, Alzahrani FA, Srivastava RK, Kumar R. Hesitant fuzzy sets based
symmetrical model of decision-making for estimating the durability of Web
application. Symmetry 2020;12(11):1770.

[40] Sjøberg DI, Anda B, Mockus A. Questioning software maintenance metrics: a
comparative case study. In: Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE; 2012,
September. p. 107–10.

[41] Arora M, Sharma A, Katoch S, Malviya M, Chopra S. A state of the art regressor
model’s comparison for effort estimation of agile software. In: 2021 2nd

(continued)

S.A. Butt et al.

http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0026
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0026
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0026
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0027
https://doi.org/10.5220/0006681900540064
https://doi.org/10.5220/0006681900540064
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0029
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.1007/s10664-021-10043-z
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0034
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0034
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0034
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0035
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0035
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0036
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0036
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0036
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0037
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0037
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0039
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0039
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0039
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0041

Advances in Engineering Software 175 (2023) 103329

12

International Conference on Intelligent Engineering and Management (ICIEM).
IEEE; 2021, April. p. 211–5.

[42] Butt SA, Khalid A, Ercan T, Ariza-Colpas PP, Melisa AC, Piñeres-Espitia G,
Ortega RM. A software-based cost estimation technique in scrum using a
developer’s expertise. Adv Eng Softw 2022;171:103159.

[43] Blinowski G, Ojdowska A, Przybyłek A. Monolithic vs. microservice architecture: a
performance and scalability evaluation. IEEE Access 2022;10:20357–74.

[44] Butt SA, Misra S, Luis DMJ, Emiro DLHF. Efficient approaches to agile cost
estimation in software industries: a project-based case study. In: International
Conference on Information and Communication Technology and Applications.
Cham: Springer; 2020, November. p. 645–59.

S.A. Butt et al.

http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00230-7/sbref0044

	Prediction based cost estimation technique in agile development
	1 Introduction
	2 Significance of study
	3 Related works
	3.1 Existing techniques
	3.2 COCOMO I
	3.3 Function point analysis
	3.4 Top-down or bottom-up estimation
	3.5 Price-to-win estimation
	3.6 Artificial neural network
	3.7 Support vector machine
	3.8 Planning poker
	3.9 Industrial surveys

	4 Proposed model
	4.1 Module’s categories
	4.1.1 Easy
	4.1.2 Average
	4.1.3 Difficult
	4.1.4 Implementation

	5 Results and analysis
	6 Statically analysis
	6.1 Variables and assessments
	6.2 Data gathering

	7 Conclusion
	Author’s contribution
	Declaration of Competing Interest
	Data Availability
	Appendix
	References

