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A B S T R A C T   

The Internet of Drones (IoD) allows for coordinated control of airspace for Unmanned Aerial 
Vehicles (UAVs), also known as drones. The decreasing costs of processors, sensors, and wireless 
connectivity have made it possible to use UAVs in many variety of military to civilian applica
tions.  While most applications utilizing the drones in the IoD have been real-time related, users 
are now interested in obtaining real-time services from drones that are tailored to a specific fly 
zone. This study develops a Sea Turtle Foraging Algorithm with Hybrid Deep Learning-based 
Intrusion Detection (STFA-HDLID) as a algorithm that recognizes and categorizes intrusions in 
the IoD environment. For this purpose, it is necessary to implement data pre-processing to 
standardize the input data via min-max normalization. Additionally, the feature selection process 
is also based on the STFA. Finally, a Deep Belief Network (DBN) with a Sparrow Search Opti
mization (SSO) algorithm is used for classification. A comprehensive experimental analysis is 
performed on a benchmark dataset to demonstrate the performance of the STFA-HDLID, which 
achieves maximum accuracy of 99.51% and 98.85% on the TON_IoT and UNSW-NB15 datasets, 
respectively, outperforming other techniques.   
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1. Introduction 

Unmanned Aerial vehicles (UAV), commonly referred to as drones, are increasingly being utilized for various applications, 
including environment monitoring, traffic surveillance, rescue operations, and disaster management [1]. With the Internet of Things 
(IoT) adoption, UAV networks are rapidly transforming into the Internet of Drones (IoD), which presents opportunities for exploring 
more complex drone applications. Drone, as a powerful tool, can provide advanced transmission and computational resources in 6 G 
and 5 G networks [2]. Nevertheless, due to limited resources on drones, Multi-access Edge Computing (MEC) is a powerful offloading 
technology that can be integrated with IoD networks for off-loading tasks at network edges [3]. Additionally, Blockchain (BC) tech
nology is used to secure IoD networks. With the increasing amount of data captured by UAVs, quick processing will become neccesary. 
Therefore, Artificial Intelligence (AI) services can be installed on UAVs by utilizing advanced Deep Learning (DL) and Machine 
Learning (ML) systems [4]. 

Network security has recently become a significant research field, primarily advancing the Internet and communication methods. 
Various systems, such as Network Intrusion Detection Systems (NIDSs) and firewalls, are employed to secure assets and networks [5]. 
NIDSs are used to monitor the network traffic for suspicious and malicious behavior. The primary ideology behind IDS was proposed in 
1980, and numerous IDS products were formulated to meet network security requirements [6]. However, in recent decades, massive 
transmission and network technology advancements have increased network size, the volume of data generated, and the number of 
applications. An IDS is a network monitoring software for suspicious activities or policy violations with related to cybercrime and 
generates a report to the managing system [7]. 

IDS can be referred to as network security. Similar to a firewall, it differs from a firewall in the way it looks for intrusions [8]. The 
firewall prevents external intrusions and limits access between networks to control intrusion. On the other hand, IDS will evaluates an 
intrusion that has already occurred and then sends an alarm signal. Many estimations have been established using ML. At the same 
time, this study utilizes DL, a branch of ML that attempts to model higher-level extractions in data through model structures with 
non-linear transformations [9]. Deep learning is selected because of its emphasis on computing methods for information represen
tation. It can be applied in a way that it could exibits classification invariance concerning a wide range of distortions and trans
formations [10], enabling us to train a network with a more extensive set of observations and extract signals from it. Deep learning 
techniques employ more complex features in the higher layer and simple features in the lower layer [11,12]. 

This study presents the STFA-HDLID algorithm to recognize and categorize intrusions in the IoD environment. The STFA approach 
is utilized for the feature selection process, and a Deep Belief Network (DBN) with a Sparrow Search Optimization (SSO) algorithm is 
employed for classification. The SSO algorithm optimizes the hyperparameters of the DBN model. An extensive experimental analysis 
is conducted on a benchmark dataset to demonstrate the improved performance of the STFA-HDLID algorithm. 

The rest of the paper is organized as follows. Section 2 presents a detailed literature review, while Section 3 describes the proposed 
model. Section 4 provides experimental validation, and Section 5 presents the concluding remarks. 

2. Related works 

Perumalla et al. [13] introduced an oppositional Aquila Optimizer-oriented feature selection (FS) with ML-assisted IDS 
(OAOFS-MLIDS) in the IoD network to establish secure access control through intrusion detection. The above-mentioned technique 
primarily pre-processes network data using minimal-maximal normalization and involves the OAOFS approach for selecting feature 
subsets to achieve this. Furthermore, the Coyote Optimization Algorithm (COA), combining with the XGBoost method is used to 
classify and recognize intrusions in the IoD network. In their recent research article, Praveena et al. [14] presented a Deep Rein
forcement Learning (DRL) method optimized by the Black Widow Optimization (BWO) algorithm [15] for detecting intrusions in drone 
networks. The DRL approach incorporates an improved RL-oriented DBN for intrusions detection. The BWO algorithm was employed 
to optimize the parameters of the DRL method, resulting in enhancing the ID performance for drone networks. 

In their study, Ramadan et al. [16] made significant progress in advancing FANET-ID approaches by introducing a realistic ana
lytics structure that employs DL techniques to investigate FANET-ID threats. The structure is based on RNN and involves data 
collection from the network and big data analytics for Anomaly Detection (AD). The agent logs realistic FANET data for analysis. 
Similarly, Tan et al. [17] developed an ID technique based on DBN, which was optimized using the Particle Swarm Optimization (PSO) 
algorithm . They first stablished a DBN-based classification technique and then used PSO to determine the optimal number of hidden 
layer nodes for the DBN infrastructure. 

Whelan et al. [18] have developed a new drone intrusion detection technique using one-class classifiers. Principal Component 
Analysis (PCA) can be used to reduce the dimensionality of sensor logs, and one-class classifier methods were generated for each 
sensor. The chosen count of one-class classifiers includes Local Outlier Factor, One-Class SVM, and AE-NN. Ouiazzane et al. [19] have 
proposed a method related to Muli-Agent system and ML approaches for detecting DoS cyber-attacks that target drone networks. The 
devised method is autonomous and characterized by its high performance. It recognizes unknown and known DoS attacks in drone 
networks with low false-positives, high accuracy, and false-negatives rates. Unlu et al. [20] presented an independent mechanism for 
detecting and tracking UAVs that utilizes a lower-angle camera and a static wide-angle camera on a rotating turret. To efficiently use 
time and memory, the authors have developed an integrated multi-frame DL detection approach, in which the frame from the zoomed 
camera on the turret is overlaid on the wide-angle static frame the cameras. 
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3. The proposed model 

This study introduces a new STFA-HDLID algorithm for intrusion detection and classification in the IoD environment. The STFA- 
HDLID algorithm first undergoes data pre-processing at the initial stage to standardize the input data via min-max normalization. Next, 
the STFA approach is utilized for feature selection process. Finally, the SSO with the DBN model is used for the classification process. 
Fig. 1 demonstrates the working flow of the STFA-HDLID system. 

3.1. Feature selection using STFA technique 

This study uses the STFA approach for the feature selection process. It has been identified that sea turtles are able to detect Dimethyl 
Sulfide (DMS) and use it to locate regions with highest concentration of prey [21]. Sea turtles travel toward food sources that release 
the most potent odor, using active and passive methods aided by ocean currents. The stages of the STFA technique are explained in 
detail below: 

Step 1. Initialize the position of N sea turtles arbitrarily in a D dimensional searching space. 

Ti(0) =
[
t1i , t2i , …, tDi

]
(1)  

whereas i = 1 to N. 

Step 2. The velocity of all the turtles, Vi(0), is arbitrarily initialized as ξv1
i ,v

2
i ,…,vD

i ]. The velocity of each turtles, vi, is constrained to 
within [v− mind,v− maxd] for all dimension d: 

v− maxd = λ
[
XUBd − XLBd] (2)  

Fig. 1. Workflow of the STFA-HDLID approach.  
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v− mind = − v− maxd (3)  

XUBd and XLBd represent the upper and lower bounds, respectively, of dth dimensional of searching spaces. λ is a real number 
between zero and one. 

Step 3. M food sources are arbitrarily created and denoted as Eq. (4) for j = 1 to M. The fitness value of each food source is then 
defined. 

Kj =
[
k1
j , k2

j , …, kD
j

]
(4)  

Step 4. The fitness of each turtle is estimated, and the most robust turtle is defined as: 

I = argmaxi[f (T(t))] (5)  

here, f(T(t)) denotes the fitness of turtle i at time t. 

Step 5. Compute the ocean’s present velocity at the turtles’ positions, VCi = [vc1
i , vc2

i , …, vcD
i ]: 

VCi(t) = γ[TI(t) − T(t)] (6)  

Step 6. The velocity of all the sea turtles is updated using the Eq. (7): 

Vi(t + 1) = Vi(t) + VC(t)

+

[
f (Ti(t)) − f (Ti(t − 1))

f (Ti(t − 1))

]

[Ti(t) − Ti(t − 1)]
(7)  

whereas Ti(t) denotes the location of turtles i at time t and f(Ti(t)) represents the fitness of turtle i at time t. 

Step 7. Compute the strength of DMS odor in the food source j which can be sensed by turtle i, Cij(t) by relating the turtles’ fitness 
with the fitness of food sources. If the turtle’s fitness is superior to that of the food source, the strength of odors in that food source is 
obtained as zero. Conversely, when the turtle’s fitness is lesser compared to the food sources, the strength of odors in that food source is 
defined as follows: 

Cij(t) =
f
(
Kj
)

∑M
q=1f (K)

e
−

[
d2
ij

2σ2 (t)

]

(8)  

Here, f(Kj) represents the fitness of food sources j. dij implies the distance between turtle i and food source j, and σ(t) controls how 
far the DMS odor spreads; it reduces exponentially with time: 

σ(t) = σ0e
−

[
t
T

]

(9) 

Step 8. Recognize the optimum food source for turtle i. An optimum food source has the maximum value of C(t) among every food 
source. 

J = argmax
[
Cij

]
(10)  

Step 9. Upgrade the place of all the turtles. 

Ti(t+ 1) = Ti(t) + ηVi(t+ 1) + CiJ(t)[KJ − T(t)] (11)  

Step10. : Verify the end condition. When every one of them is met, this technique ends. If not, two conditions are verified: i) When 
the value of t/T is an integer, return to step 3; ii) If the value of t/T is not an integer, go back to step 4. 

The fitness function (FF) considers the count of selected features and the classifier’s accuracy. It aims to minimize the set size of 
selected features and maximize classification accuracy. Hence, the following FF is used to evaluate individual solutions: 

Fitness = α ∗ ErrorRate+ (1 − α) ∗ #SF
#All F

(12) 

Where ErrorRate indicates the classification error rate using the selected feature. It can be evaluated as the percentage of improper 
classifications to the total number of classifications generated within the range of [0, 1]. (ErrorRate denotes complement of classifi
cation accuracy), #SF points the number of selected attributes, and #All F represents the total number of features in the original data. 
α is used to control the significance of subset length and classification quality. 
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3.2. Data classification using DBN model 

This study employs the DBN model for intrusion detection and classification. The DBN is an efficient DL technique that comprises 
several RBMs for classifying datasets [22]. The learned activation unit of the initial RBM serves as the input for subsequent RBMs in the 
stack. Furthermore, the DBN is an undirected graphical method in which the visible parameter is connected to a hidden unit via 
undirected weight. Nevertheless, the there is no connection between visible and hidden parameters. Fig. 2 illustrates the framework of 
the DBN technique. The energy functions (E(m, n, θ)), likelihood distribution pd, visible parameter (m), and hidden unit (n) are 
arithmetically formulated as follows: 

− logpd(m, n)αE(m, n, θ) = −
∑|V|

i=1

∑|Q|

j=1
wijminj −

∑|V|

i=1
bimi −

∑|Q|

j=1
ajnj (13) 

Whereas θ = (w, b, a) denotes the parameter set, bi and aj represent bias, wij signifies the symmetric weights among the visible 
parameters (m), and α characterizes the learning rate. In the DBN, the number of hidden and visible layers is denoted by |Q| and |V|. 
The conditional likelihood distribution of hidden units (n) and visible parameters (m) is determined as follows: 

pd
(
nj
⃒
⃒m, θ

)
= sigm

∑|V|

i=1
wijmi + aj (14)  

pd(mi|n, θ) = sigm
∑|Q|

j=1
wijni + bj (15) 

Here, sigm (M) =
(

1
1+e− m

)
characterizes the sigmoid function, and the parameter θ signifies learned exploiting contrastive diver

gence. In the DBN classification, the parameter θ is obtained by applying RBM as follows: 

Fig. 2. DBN architecture.  

Table 1 
Details on TON_IoT Dataset.  

Label Attack Type No. of Records 

C-1 Backdoor 1000 
C-2 DDoS 1000 
C-3 DoS 1000 
C-4 Injection 1000 
C-5 MITM 1000 
C-6 Password 1000 
C-7 Ransomware 1000 
C-8 Scanning 1000 
C-9 XSS 1000 
C-10 Benign 1000 
Total Number of Attacks 10,000  
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Fig. 3. Confusion matrices of STFA-HDLID approach under TON_IoT dataset: (a) 70% of TR dataset, (b) 30% of TS dataset, (c) 80% of TR dataset, 
and (d) 20% of TS dataset. 
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pd(m) =
∑

n
pd(n|θ)pd(m|n, θ) (16) 

The value of pd(m|n,θ) is retained, describing θ from RBM; later, pd(n|θ) is interchanged employing successive RBM that treats the 
previous RBM hidden layers as a visible number. 

3.3. Parameter tuning using SSO algorithm 

At the final stage, the SSO algorithm adjusts the hyperparameters related to the DBN method, drawing inspiration from sparrows’ 
anti-predation and foraging behaviors [23]. The foraging behavior of the sparrow corresponds to the roles of followers and discoverers. 
In each iteration of the global search food, the sparrows with the best position are carefully chosen as discoverers who provide foraging 
areas and direction for every follower. The rest of the sparrows are followers who compete for food by following the discoverers. The 
anti-predation behaviors of the sparrows correspond to the early warning and reconnaissance mechanisms. A few sparrows conduct 
reconnaissance and provide earlier warnings. They give up food and fly to a new position if danger is found. The following matrix 
represents the sparrow population (n sparrows): 

Table 2 
Result analysis of STFA–HDLID algorithm with 70:30 of TR and TS data under the TON_IoT dataset.  

Labels Accuracy Sensitivity Specificity F-Score MCC 

Training Phase (70%) 
Backdoor 99.66 97.67 99.87 98.24 98.05 
DDoS 99.40 96.38 99.75 97.06 96.73 
DoS 99.54 97.79 99.73 97.64 97.39 
Injection 99.29 93.70 99.90 96.32 95.97 
MITM 99.31 98.87 99.36 96.68 96.33 
Password 99.49 96.15 99.86 97.40 97.12 
Ransomware 99.57 96.89 99.87 97.86 97.63 
Scanning 99.43 98.30 99.56 97.20 96.89 
XSS 99.41 97.99 99.57 97.08 96.76 
Benign 99.47 99.14 99.51 97.41 97.13 
Average 99.46 97.29 99.70 97.29 97.00 
Testing Phase (30%) 
Backdoor 99.57 98.09 99.74 97.93 97.69 
DDoS 99.57 96.09 99.93 97.65 97.43 
DoS 99.63 99.38 99.66 98.31 98.11 
Injection 99.43 94.70 99.96 97.11 96.84 
MITM 99.40 97.61 99.59 96.95 96.62 
Password 99.67 97.32 99.93 98.31 98.13 
Ransomware 99.43 97.27 99.67 97.10 96.79 
Scanning 99.60 99.32 99.63 97.98 97.77 
XSS 99.33 97.70 99.52 96.74 96.38 
Benign 99.43 97.66 99.63 97.17 96.86 
Average 99.51 97.51 99.73 97.53 97.26  

Fig. 4. Average analysis of STFA-HDLID approach with 70:30 of TR and TS data under the TON_IoT dataset.  
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X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X1
1 X2

1 ⋯ Xd
1

X1
2 X2

2 ⋯ Xd
2

⋮
X1

n X2
n ⋯ Xd

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17) 

In Eq. (17), nindicates the total number of sparrows in the population, and d represents the dimension that needs improvement. The 
fitness of each sparrow in the population is calculated by Eq. (18): 

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f ([X1
1 X2

1 ⋯ Xd
1 ])

f ([X1
2 X2

2 ⋯ Xd
2 ])

⋮
f ([X1

n X2
n ⋯ Xd

n ])

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(18) 

Table 3 
Result analysis of STFA-HDLID algorithm with 70:30 of TR and TS data under the TON_IoT dataset.  

Labels Accuracy Sensitivity Specificity F-Score MCC 

Training Phase (80%) 
Backdoor 99.08 92.12 99.85 95.21 94.77 
DDoS 99.01 92.88 99.68 94.87 94.35 
DoS 99.45 97.07 99.71 97.19 96.89 
Injection 99.35 96.57 99.65 96.70 96.34 
MITM 99.29 96.44 99.61 96.50 96.10 
Password 99.20 97.87 99.35 96.06 95.64 
Ransomware 99.35 96.50 99.67 96.74 96.38 
Scanning 99.24 98.40 99.33 96.33 95.93 
XSS 99.45 98.01 99.61 97.28 96.98 
Benign 99.49 98.52 99.60 97.50 97.23 
Average 99.29 96.44 99.61 96.44 96.06 
Testing Phase (20%) 
Backdoor 99.50 95.02 100.00 97.45 97.21 
DDoS 99.50 96.24 99.89 97.62 97.35 
DoS 99.40 96.30 99.78 97.20 96.87 
Injection 99.25 98.58 99.33 96.54 96.14 
MITM 99.55 97.30 99.78 97.56 97.31 
Password 99.25 96.53 99.56 96.30 95.88 
Ransomware 99.55 97.51 99.78 97.76 97.51 
Scanning 99.55 97.33 99.78 97.59 97.34 
XSS 99.35 98.98 99.39 96.76 96.43 
Benign 99.80 100.00 99.78 98.94 98.84 
Average 99.47 97.38 99.71 97.37 97.09  

Fig. 5. Average analysis of STFA-HDLID approach with 80:20 of TR and TS data under the TON_IoT dataset.  
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Fig. 6. TRA and VLA analysis of STFA-HDLID approach under TON_IoT dataset.  

Fig. 7. TRL and VLL analysis of STFA-HDLID approach under TON_IoT dataset.  
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Where X represents the fitness of various discoverers, the sparrow with the best fitness values is the first to achieve food, leading the 
whole population as discoverers. The location is updated as follows: 

Xt+1=
i,j

⎧
⎪⎨

⎪⎩

xt
i,j ⋅ exp

(
− i

α ⋅ iter max

)
′R2 < ST

xt
i,j + Q ⋅ L, R2 ≥ ST

(19) 

In Eq. (19), t refers to the number of existing iterations; Xt+1
i,j indicates the j-th parameter location of the i-th individual in the t + 1 

iterations of the population.itermax shows the maximal number of iterations. α indicates a random number uniformly distributed within 
[0,1]. Q denotes a uniform distribution random number; L indicates a 1 × d matrix with every component being 1. ST represents the 
alert threshold between [0.5, 1], and R2 indicates that the warning value ranges from zero to one. If R2 ≥ ST, the warning is generated, 
and the sparrow has discovered the predator. Now, every sparrow leaves the warning zone. If R2 < ST implies no predator fly closer, 
and the discoverers continue exploring in a large area. The location of followers is updated using Eq. (20): 

Xt+1=
i,j

⎧
⎪⎨

⎪⎩

Q ⋅ exp
(xt

worst − xt
i,j

i2

)
′ i > n

/

2

xt+1
p +

⃒
⃒
⃒Xt

i,j − Xt+1
p

⃒
⃒
⃒ ⋅ A+ ⋅ L, i ≤ n

/
2

(20) 

The expression, Xt
worst indicates the worst location of the existing population, while χt+1

p shows the better location of the existing 
population. A+ = AT(AAT)− 1, where A is a 1 × d matrix, and each component in the row vector is randomly assigned 1 or − 1. n 
represents the size of the sparrow population, and some sparrows give alerts when the population is foraging. When a natural predator 
approaches, the follower and discoverer will give up the food and fly to other positions. SD (usually 10% to 20%) sparrows are 
arbitrarily selected from all generations in the population to provide an earlier warning: 

Xt+1
i,j =

⎧
⎪⎨

⎪⎩

Xt
best + β.

⃒
⃒
⃒Xt

i,j − Xt
best

⃒
⃒
⃒, fi > fg

Xt
i,j + K.

(Xt
i,j − Xt

worst

(fi > fw)

)

, fi = fg
(21) 

In Eq. (21), Xt
best indicates the present global optimal location. β denotes a random number under the uniform distribution, and K 

represents a random number uniformly distributed within [1,1]. fi, fg, and fw represent the fitness value, globally optimal and global 
worst fitness values of the present population. The value of ε is set to avoid divide-by-zero errors. The condition fi > fg means that the 
sparrow was at the edge of the population and was attacked by the predator, while fi = fg means that the sparrow is in the center of the 
population and realizes the threat of being attacked by the predator and should approach other sparrows. 

The SSO approach improves FF to achieve higher classifier efficiency by determining a positive integer that signifies the best 
performance of candidate results. This study’s minimized classifier error rate is represented as FF, as provided in Eq. (22). 

fitness(xi) = ClassifierErrorRate(xi)

=
number of misclassified samples

Total number of samples
∗ 100

(22)  

4. Results and discussion 

The proposed model was simulated using Python 3.6.5 tool on a PC with an i5–8600k processor, GeForce 1050Ti 4GB graphics 
card, 16GB RAM, 250GB SSD, and 1 TB HDD. The parameter settings were: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 
50, and activation function: ReLU. This section assesses the intrusion detection performance of the STFA-HDLID algorithm on two 
benchmark datasets: the TON_IoT dataset and the UNSW-NB15 dataset. The TON_IoT dataset comprises 10,000 samples with ten class 

Table 4 
Details on UNSW-NB15 dataset.  

Label Class No. of Samples 

C-1 Worms 174 
C-2 Shell Code 1511 
C-3 Reconnaissance 13,987 
C-4 Normal 93,000 
C-5 Generic 58,871 
C-6 Fuzzers 24,246 
C-7 Expoits 44,525 
C-8 DoS 16,353 
C-9 Backdoor 2329 
C-10 Analysis 2677 
Total Number of Samples 257,673  

J. Escorcia-Gutierrez et al.                                                                                                                                                                                           



Computers and Electrical Engineering 108 (2023) 108704

11

labels (as shown in Table 1) considering heterogeneous data sources collected from IoT and Industrial IoT (IIoT) sensor Telemetry 
datasets. It is considered the new generations of Industry 4.0/IoT and Industrial IoT (IIoT) datasets, designed to evaluate the fidelity 
and efficiency of cybersecurity applications based on AI models. The raw network packets of the UNSW-NB 15 dataset were created by 
the IXIA PerfectStorm tool in the Cyber Range Lab of UNSW Canberra to generate a hybrid of real modern normal activities and 
synthetic recent attack behaviors. The tcpdump captured 100GB of raw traffic (e.g., Pcap files). 

The confusion matrices generated by the STFA-HDLID algorithm for the TON_IoT dataset are shown in Fig. 3. Indicating that the 
method has proficiently recognized ten class labels under all aspects. 

Table 2 and Fig. 4 present the results of the STFA-HDLID algorithm on 70% of the TR and 30% of the TS dataset in the TON_IoT 

Fig. 8. Confusion matrices of STFA-HDLID approach under UNSW-NB15 dataset (a) 70% of TR dataset, (b) 30% of TS dataset, (c) 80% of TR 
dataset, and (d) 20% of TS dataset. 
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dataset. The obtained outcomes demonstrate an enhanced performance in both cases. For instance, with 70% of the TR dataset, an 
average accuy, sensy, specy, Fscore,and MCCof 99.46%, 97.29%, 99.70%, 97.29%, and 97.00%, respectively, were achieved. Similarly, 
with 30% of the TS dataset, an average accuy, sensy, specy, Fscore,and MCCof 99.51%, 97.51%, 99.73%, 97.53%, and 97.26%, 
correspondingly. 

Table 3 and Fig. 5 present the results of the STFA-HDLID algorithm on 80% of the TR and 20% of the TS dataset on the TON_IoT 
dataset. The outcomes indicate an improved performance in both cases. For example, with 80% of the TR dataset, an average accuy, 
sensy, specy, Fscore,and MCCof 99.29%, 96.44%, 99.61%, 96.44%, and 96.06%, respectively, were performed. Meanwhile, with 20% of 
the TS dataset, an average accuy, sensy, specy, Fscore,and MCCof 99.47%, 97.38%, 99.71%, 97.37%, and 97.09%, correspondingly. 

Fig. 6 displays the Training Accuracy (TRA) and Validation Accuracy (VLA) achieved by the STFA-HDLID approach under the 
TON_IoT dataset. The experimental result indicates that the algorithm achieved maximum values of TRA and VLA, with VLA being 
greater than TRA. 

Fig. 7 shows the Training Loss (TRL) and Validation Loss (VLL) obtained by the STFA-HDLID algorithm in the TON_IoT dataset. The 
experimental result demonstrates that the algorithm exhibited minimal TRL and VLL, with VLL being lesser than TRL. 

Table 4 shows that the UNSW-NB15 dataset contains 257,673 samples with ten class labels. Fig 8. Displays the confusion matrices 
generated by the STFA-HDLID algorithm on the UNSW-NB15 dataset, indicating that the approach has effectively recognized all ten 

Table 5 
Result analysis of STFA–HDLID approach with 70:30 TR and TS data under the UNSW-NB15 dataset.  

Labels Accuracy Sensitivity Specificity F-Score MCC 

Training Phase (70%) 
Backdoor 99.93 00.00 100.00 00.00 00.00 
DDoS 99.41 00.09 100.00 00.19 01.75 
DoS 99.01 92.15 99.40 90.95 90.43 
Injection 98.86 97.62 99.56 98.41 97.53 
MITM 99.14 97.77 99.54 98.11 97.55 
Password 99.05 92.33 99.75 94.84 94.36 
Ransomware 99.21 97.12 99.64 97.68 97.21 
Scanning 95.62 94.40 95.71 73.17 73.12 
XSS 99.15 12.03 99.95 20.48 28.56 
Benign 99.01 06.21 99.99 11.58 23.04 
Average 98.84 58.97 99.35 58.54 60.36 
Testing Phase (30%) 
Backdoor 99.93 00.00 100.00 00.00 00.00 
DDoS 99.42 00.00 100.00 00.00 00.00 
DoS 99.01 92.78 99.37 91.20 90.69 
Injection 98.76 97.36 99.55 98.26 97.31 
MITM 99.16 97.93 99.53 98.16 97.62 
Password 99.06 92.44 99.74 94.81 94.33 
Ransomware 99.21 97.11 99.65 97.72 97.25 
Scanning 95.72 94.71 95.79 73.94 73.85 
XSS 99.16 11.72 99.95 20.05 28.27 
Benign 99.04 06.57 99.99 12.25 24.33 
Average 98.85 59.06 99.36 58.64 60.36  

Fig. 9. Average analysis of STFA-HDLID approach with 70:30 of TR and TS data under UNSW-NB15 dataset.  
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class labels in all aspects. 
The results of the STFA-HDLID algorithm on 70% of the TR and 30% of the TS datasets on the UNSW-NB15 dataset are presented in 

Table 5 and Fig. 9. The outcomes indicate an improved performance in both cases. For example, with 70% of the TR dataset, an average 
accuy, sensy, specy, Fscore,and MCCof 98.84%, 58.97%, 99.35%, 58.54%, and 60.36%, correspondingly, were achieved. Parallelly, with 
30% of the TS dataset, an average accuy, sensy, specy, Fscore,and MCCof 98.85%, 59.06%, 99.36%, 58.64%, and 60.36%, respectively. 

Table 6 and Fig. 10 illustrate the results of the STFA-HDLID algorithm on 80% of the TR and 20% of the TS dataset on the UNSW- 
NB15 dataset. The results point an enhanced performance in both cases. For example, with 80% of the TR dataset, an average accuy, 
sensy, specy, Fscore,and MCCof 98.54%, 56.25%, 99.17%, 56.14%, and 57.40%, correspondingly, were performed. At the same time, 
with 20% of the TS dataset, an average accuy, sensy, specy, Fscore,and MCCof 98.56%, 56.72%, 99.18%, 56.99%, and 58.53%, 
respectively. 

The TRA and VLA achieved by the STFA-HDLID algorithm on the UNSW-NB15 dataset are shown in Fig. 11. The experimental 
results indicate a maximum value of TRA and VLA, with VLA being greater than TRA. 

Fig. 12 displays the TRL and VLL obtained by the STFA-HDLID algorithm under the UNSW-NB15 dataset. The experimental out
comes show that minimal values of TRL and VLL have been reached. Notably, the VLL is lower than TRL. 

Table 7 and Fig. 13 report comparative intrusion detection results of the STFA-HDLID algorithm on the TON_IoT dataset [13]. The 

Table 6 
Result analysis of STFA-HDLID approach with 70:30 of TR and TS data under UNSW-NB15 dataset.  

Labels Accuracy Sensitivity Specificity F-Score MCC 

Training Phase (80%) 
Backdoor 99.93 00.00 100.00 00.00 00.00 
DDoS 99.38 01.67 99.95 03.03 04.98 
DoS 94.79 91.83 94.96 65.63 66.25 
Injection 98.91 98.44 99.18 98.49 97.64 
MITM 98.71 98.80 98.68 97.21 96.39 
Password 98.56 88.66 99.59 92.08 91.37 
Ransomware 98.96 95.97 99.58 96.95 96.33 
Scanning 98.04 71.93 99.82 82.39 82.36 
XSS 99.16 14.39 99.95 24.04 32.17 
Benign 98.95 00.79 99.99 01.55 06.48 
Average 98.54 56.25 99.17 56.14 57.40 
Testing Phase (20%) 
Backdoor 99.93 00.00 100.00 00.00 00.00 
DDoS 99.37 01.90 99.97 03.57 07.24 
DoS 94.96 91.48 95.16 66.50 66.95 
Injection 98.84 98.30 99.14 98.38 97.48 
MITM 98.65 98.73 98.62 97.13 96.26 
Password 98.63 89.31 99.60 92.44 91.76 
Ransomware 98.93 96.02 99.53 96.86 96.22 
Scanning 98.02 71.20 99.82 81.91 81.93 
XSS 99.30 18.66 99.96 30.06 37.75 
Benign 99.00 01.55 99.99 03.02 09.66 
Average 98.56 56.72 99.18 56.99 58.53  

Fig. 10. Average analysis of STFA-HDLID approach with 80:20 of TR and TS data under the UNSW-NB15 dataset.  
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Fig. 11. TRA and VLA analysis of STFA-HDLID approach under UNSW-NB15 dataset.  

Fig. 12. TRL and VLL analysis of STFA-HDLID approach under the UNSW-NB15 dataset.  
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results show that the LR method performs poorly, whereas the LSTM-RNN, KNN, and SVM methods have achieved relatively close 
classifier outcomes. The CNN model has attained a reasonable results with accuy of 98.62% and sensy of 94.19%. However, the pre
sented STFA-HDLID algorithm has accomplished higher performance with accuy of 99.51% and sensy of 99.73%. 

Table 8 and Fig. 14 depict comparative intrusion detection outcomes of the STFA-HDLID algorithm on the UNSW-NB15 dataset. 
The results show that the LR approach exhibited poor classification performance, whereas the LSTM-RNN, CNN, and SVM techniques 
achieved closer classifier results. 

The KNN technique achieved a reasonable outcome with an accuy of 98.35% and a sensy of 97.55%. However, the presented STFA- 
HDLID approach demonstrate better performance with an accuy of 98.85% and a sensy of 99.36%. Thus, the STFA-HDLID algorithm can 
enhance intrusion detection in the IoD environment. 

5. Conclusion 

In this study, a new intrusion detection and classification algorithm called STFA-HDLID was developed for the IoD environment. 
Initially, the proposed algorithm underwent data pre-processing, in which min-max normalization was used to standardize the input 
data. Additionally, the STFA approach was utilized for the feature selection, and finally, the SSO with the DBN model was used for 
classification. The SSO algorithm was applied for optimal modification of the hyperparameters related to the DBN model. A 
comprehensive experimental analysis was conducted on a benchmark dataset, demonstrating the improved performance of the STFA- 

Table 7 
Comparative analysis of STFA-HDLID approach with existing algorithms under the 
TON_IoT dataset.  

Methods Accuracy Sensitivity 

STFA-HDLID 99.51 99.73 
LSTM-RNN 97.70 96.92 
LR 96.64 96.68 
KNN 97.53 97.05 
SVM 97.99 96.07 
CNN 98.62 94.19  

Fig. 13. Comparative analysis of STFA-HDLID approach with existing algorithms under the TON_IoT dataset.  

Table 8 
Comparative analysis of STFA-HDLID approach with existing algorithms under the 
UNSW-NB15 dataset.  

Methods Accuracy Sensitivity 

STFA-HDLID 98.85 99.36 
LSTM-RNN 98.02 97.44 
LR 96.34 97.17 
KNN 98.34 97.55 
SVM 97.46 97.21 
CNN 96.55 96.72  
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HDLID algorithm over other recent techniques. Therefore, the proposed algorithm can achieve security in the IoD environment. Outlier 
detection algorithms could be employed in the future to further enhance the security performance of the STFA-HDLID algorithm 
compared to other methods. 
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he is a full-time professor in the Engineering Faculty of Universidad Autónoma del Caribe. 

Romany F. Mansour received the B.Sc. and M.Sc. degrees in computer science from Assiut University, Egypt, in 1998 and 2006, respectively, and the Ph.D. degree from 
the University of Assiut, in 2009. His-research interests include pattern recognition, computer vision, computer networks, soft computing, image processing, evolu
tionary computation, and machine learning. 

Meshal Alharbi is PhD (Computer Science) from Durham University (UK) & MSc (Computer Science) from Wayne State University (USA). He has 10 years of Experience 
in Teaching/Research/Industry. His-research interests lie in the Artificial Intelligence Applications and Algorithms, Agent-Based Modelling and Simulation Applica
tions, Disaster/Emergency Management and Resilience, Optimization Applications, and Machine Learning. 

Ahmed alkhayyat is currently a dean of international relationship and manager of the word ranking in the Islamic university, Najaf, Iraq. Also, he is head of Islamic 
University Centre for Scientific Research. His-research interests include IoT in the health-care system, security, SDN, network coding, cognitive radio, efficient-energy 
routing algorithms. 

Deepak Gupta is an assistant professor at Department of Computer Science and Engineering, Maharaja Agrasen institute of Technology, Delhi, India. His-research 
interests include Intelligent Data Analysis, Nature-Inspired Computing, Machine Learning and Soft Computing. 

J. Escorcia-Gutierrez et al.                                                                                                                                                                                           

http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0010
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0010
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0011
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0011
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0012
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0012
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0013
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0013
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0014
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0014
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0015
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0015
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0016
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0017
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0018
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0018
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0019
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0019
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0020
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0020
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0021
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0021
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0022
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0022
http://refhub.elsevier.com/S0045-7906(23)00128-3/sbref0023

	Sea turtle foraging algorithm with hybrid deep learning-based intrusion detection for the internet of drones environment
	1 Introduction
	2 Related works
	3 The proposed model
	3.1 Feature selection using STFA technique
	3.2 Data classification using DBN model
	3.3 Parameter tuning using SSO algorithm

	4 Results and discussion
	5 Conclusion
	Ethics approval
	Consent to participate
	Informed consent
	Declaration of Competing Interest
	Data availability
	References


