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Abstract. Indicators are the most important management tool for environmental monitoring. 

Environmental indicators condense the information and simplify the approach to environmental 

phenomena, which are often complex, and makes them very useful for communication. The 

usefulness of these indicators consists of providing relevant information, summarized in the form 

of concise and illustrative statements for decision making, both for the organization’s 

management and for the rest of the members. The prediction of limit values, together with the 

potentialities offered by the recommendation system based on ontology make this system a 

powerful tool for supporting decision-making in the Environmental Management process with a 

wide possibility of generalization in the business sector. 

1. Introduction 

The usefulness of these environmental indicators consists of providing relevant information, 

summarized in the form of concise and illustrative statements for decision making, both for the 

organization’s management and for the rest of the members. Therefore, they ensure a rapid assessment 

of the main improvements and weaknesses in the company's environmental protection, for those who 

make decisions [1]. For this reason, it is necessary to use environmental indicators for measuring the 

behavior of the organization in this area, facilitating communication and condensing environmental 

information. The use of indicators, in turn, contributes to an improvement in the management of 

environmental knowledge.  

In order to manage knowledge, its representation is decisive, which represents the process of 

structuring knowledge about a problem in a way that is easier to solve. In order to promote management 

and specifically the representation of knowledge, Semantic Technologies (ST) are increasingly used. 

Within ST, ontologies are currently one of the most widely used Forms of Knowledge Representation 

Systems (KRS) [2].  

In this sense, [3] developed an "ontology-based system for knowledge management with 

environmental indicators" (SIGCIA) with the objective of managing the environmental knowledge that 

is inferred from the historical storage of the environmental business indicators. 

For this reason, the study proposes the use of Artificial Neural Networks (ANN) to predict the limit 

value of the indicator from its historical storage. Among the potentialities that ANNs offer is that they 

do not need a human expert for extracting knowledge. 
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2.  System Based on Ontology of Environmental Indicators 

Today, one of the most commonly used forms of knowledge representation are ontologies, which offer 

dissimilar advantages for the modeling, generation, distribution and use of knowledge produced and 

accumulated in organizations [4]. Given these advantages for knowledge management, ontologies are 

widely used to manage the large volumes of environmental information that result from this process, 

mainly from the historical storage of environmental indicators.  

The SIGCIA system is based on the OntoEnvironmental ontology, in which the environmental 

indicators governing the corporate environmental management process are modeled [5]. The software 

based on this system of indicators allows their calculation considering that the indicator must have 

predefined its limit value (which is manually defined by the Environmental Management Specialist in 

correspondence to the tacit agreement on the historical behavior of the indicator). In response to this 

action, the system compares the value and limit value of the indicator. If the value of the indicator is 

greater than the limit value, the system declares that the indicator is altered and, through the inference 

machine, recommends possible causes, possible environmental impacts and mitigation actions [6].  

However, there is yet deficiency for the potential improvements that the implementation of the 

SIGCIA system offers for the correct performance of the environmental management process in the 

organizations. It is difficult for the Environmental Management Specialist to establish limit values due 

to the fact that indicators reflect different areas of the entity (e.g., energy area, transport), therefore, the 

value is established in a subjective way. As a result, a bad decision to establish a limit value restricts the 

potential offered by the system by not making recommendations in a timely way [7] [8]. 

3.   Knowledge Discovery in Databases 

Large volumes of data and information that are currently handled have resulted in the need to develop 

techniques and tools to assist man to extract useful information, knowledge and patterns of stored data. 

Knowledge Discovery in Databases (KDD) comes to meet this need.  

According to [9], KDD is defined as "The non-trivial process of identification, in the data, of valid, 

novel, understandable and potentially useful patterns". KDD is a computing area that attempts to exploit 

the enormous amount of information by discovering representative and useful patterns, extracting 

knowledge that can assist a human to perform tasks in a more efficient and satisfactory way.  

The phases that this process goes through are shown in general terms by [10] [11] [12]: 

• Selection: develops an understanding of the problem domain and the data that will be used in 

the knowledge discovery task. 

• Pre-processing and transformation: they include all activities for the construction of the final 

dataset. These tasks include selection of records, attributes, data cleaning, treatment of missing 

values, among others. Data transformation is also performed in the format required by the 

selected data mining tool. This task consumes between 35% and 20% of the time. 

• Data mining (MD): is the determination of the discovery task to be performed (classification, 

regression, grouping, ...) and the application of one or more algorithms of that task, in order to 

discover hidden patterns in the data. This task occupies between 15% and 20% of the project's 

completion time. 

• Interpretation and evaluation: the patterns discovered are interpreted and evaluated, so it is 

sometimes necessary to return to the previous steps, which implies repeating the process, 

perhaps with other data, algorithms, goals and strategies. This step can be aided by 

visualizations and contributes to eliminating redundant or irrelevant patterns. 

 

3.1 Data selection 

Every KDD project has its origins in the request of a client who wants to improve some of his processes 

using the historical data. In order to take full advantage of these data, it is necessary that the 

implementers of this type of project know and understand the data. The historical storage of each 

environmental indicator constitutes a dataset. This indicator needs to have its limit value calculated in 

order to know when it is altered and recommend possible causes, possible environmental impacts and 
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mitigation actions. The KDD scheme was applied to perform the calculation, with the aim of finding a 

model that would allow this value to be obtained as accurately as possible [13] [14] [15]. 

In order to carry out this research, the data referring to the monthly energy consumption indicator of 

a Construction Company (CC) are available. This information contains a history of approximately 5 

years (from December 1, 2014 to July 1, 2019). The CC manages 6 parameters to record the monthly 

electricity consumption in its files, as shown in Table 1. 

 

Table 1. Description of the dataset 

 

  Attribute  Value  

Date data 

global active power (kilowatt) actual 

global reactive power (kilowatt) actual 

voltage (volt) actual 

global intensity (ampere) actual 

  consumption (watt/hora)  actual  

 

Figure 1 shows the behavior of the instances of dataset. It can be noted that, in most months, the energy 

consumption is between 1700- 2555 (watt/hour). 

 

 
 

Figure 1. Distribution by instance (consumption attribute) 

 

3.2 Attribute Selection  

Attribute Selection (AS) can be defined as the process of obtaining the most representative n attributes 

of the original N from the elimination of redundant and irrelevant Ns. In a more formal way, the objective 

is to select a subset of S attributes of the original space A with class C, such that P (C | S) ≈ P (C | A), 

that is, to obtain better or equal predictive performance through the elimination of noisy and redundant 

attributes [16]. 

There are several criteria for grouping the AS algorithms. One of them is the application mode, 

according to which they can be seen as filter or wrapper. In this study, the way for applying the 

algorithms for selecting attributes was by means of the wrapper criterion. Enveloping strategies are those 

that use the classifier precision to evaluate the subsets of the space. This strategy offers better results, 

since in a previous step to the classification, the Learning Algorithm chooses the attributes that best 

represent the knowledge for its construction. However, it is highly expensive. 

Five algorithms of enveloping strategies were used: Linear Regression (LR), Multi-layer Perceptron 

(MLP), M5P, K-nearest neighbors (K-nn) and M5Rules (M5R) [17]. 
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3.2.1 Linear Regression 

Regressive analysis is a technique used for inter and extra polar observations, which can be classified 

as linear or non-linear regression. A regression model is when the response variable and the explanatory 

variables are all quantitative. It allows determining the mathematical model or equation that best 

represents the existing relationship between the analyzed variables [18]. 

 

3.2.2 Multi-Layer Perceptron  

An Artificial Neural Network (ANN) is a computational model that aims to simulate the functioning of 

the brain. The learning process of an ANN with Multi-layer Perceptron topology consists of determining 

the weights that allow the underlying knowledge to be coded in the data [19]. This consists of varying 

the weights according to some learning rule until they are constant, so it is said that the network has 

learned. Its good predictive performance is given by the high noise tolerance of the data and the ability 

to capture complex relationships between attributes and the class. 

 

3.2.3 M5P  

In the case of the M5P algorithm, it is an issue of obtaining a model tree (a linear model that predicts 

the value of the class), although it can be used to obtain a regression tree since this is a specific case of 

a model tree [20]. 

 

3.2.4 K-Nearest Neighbors  

It is a simple algorithm that stores all available cases and classifies new cases on the basis of a similarity 

measure (distance functions). K-nn has been used in statistical pattern recognition, estimation and, 

already in the early 1970s, as a non-parametric technique. A case is classified by a majority vote of its 

neighbors, with the case being assigned to the most common class among its K-nearest neighbors, 

measured by a function of distance. If K = 1, then the case is simply assigned to the class of its nearest 

neighbor [21]. 

 

3.2.5 M5Rules  

M5Rules performs a span regression, with each span determined from a regression tree. It implements 

base routines to generate M5 Models of trees and rules. The original M5 algorithm [11]. 

 

3.3 Data Mining  

In this research, an experimental study was prepared to explore the behavior of ANNs in datasets where 

their class type is continuous. The Weka tool [3] was used for the execution of experiments, which is a 

software developed at the University of Waikato (New Zealand) under GNU (General Public License), 

and is characterized by its architectural independence.  

An experimentation scheme based on cross validation is used to ensure greater statistical robustness. 

This proposal consists of a cross validation procedure with ten partitions with a run as proposed by [21]. 

It is used as an evaluation parameter: 

 

• Correlation coefficient  

• Absolute mean error 

  

Correlation is the statistical technique that studies the problem of measuring the intensity or degree 

of relationship that exists between the variables being researched. The Correlation Coefficient is a value 

between -1 and 1 that indicates the linear relationship that exists between two variables. The absolute 

mean error measures the average magnitude of errors in a set of forecasts, regardless of their direction. 

It measures accuracy for continuous variables. An experiment was performed using the Wrapper strategy 

selection algorithms mentioned above and as regression algorithms: LR, MLP, M5P, K-nn and M5R. 

The results are shown in Tables 2 and 3. 
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3.4 Interpretation and evaluation  

In Table 2 and Table 3 the highlighted values are the algorithms with best correlation coefficient and 

mean absolute error respectively. It can be noted that the MLP regression algorithm with the Wrapper 

MLP strategy attribute selector presents the highest correlation coefficient in Table 2 and the lowest 

absolute mean error in Table 3. 

 

Table 2. Result of correlation coefficient 

 

Wrapper 

LR MLP M5P K-nn M5R - 

LR 0,685 0,671 0,566 0,1785 0,696 0,611 

MLP 0,785 0,931 0,799 0,235 0,868 0,821 

M5P 0,898 0,873 0,915 0,796 0,898 0,836 

K-nn 0,799 0,886 0,724 0,687 0,632 0,854 

M5R 0,811 0,790 0,885 0,799 0,821 0,965 

 

Table 3. Absolute mean error result 

 

Wrapper 

  LR  MLP  M5P  K-nn  M5R  -  

LR 757 798 741 833 747 752 

MLP 465 336 425 786 325 336 

M5P 398 375 336 588 436 375 

K-nn 335 298 398 347 395 396 

M5R 474 368 447 325 347 387 

 

Figure 2 shows the CC electricity consumption over five years. In this trend graph, consumption is 

presented by months. The blue color represents the actual consumption, while the red color is the 

consumption predicted by the MLP algorithm. It shows that the error of the classifier is low. 

 

 
 

Figure 2. Energy Consumption Forecast. Red refers to the forecast and blue to the actual value. 

4.  Conclusions  

In the study of the attribute selection algorithms with the Wrapper strategy to select the methods to be 

applied in the study, it was possible to verify that redundant and irrelevant attributes existed, due to the 

fact that the one with the best results was Wrapper (MLP), eliminating the "Intensity" attribute. The 

study of five regression models from different branches showed that the Multi-Layer Perceptron 

regression algorithm showed the best performance in terms of measured parameters, correlation 

coefficient and mean absolute error.  

The integration of the Multi-Layer Perceptron regression algorithm into the SIGCIA system allows 

the prediction of the limit value of the energy consumption indicator that was the data set selected in the 
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current investigation. This facilitates the work of the Environmental Management Specialist because the 

system makes recommendations in a timely manner and favors decision making in this regard. The 

results obtained with the application of the Multi-Layer Perceptron regression algorithm to the set of 

data taken from the Construction Company (CC) regarding the energy consumption indicator show that, 

for this indicator in other organizations, the aforementioned algorithm can be generalized. 
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