Original Article

Estimating strength properties of geopolymer self-compactong concrete using machine learning techniques

Paul O. Awoyeraa,b,c,*, Mehmet S. Kirgizd, A. Viloriae,f, D. Ovallos-Gazabong

a Department of civil Engineering, Covenant University, Ota, Nigeria
b Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
c Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam
d Istanbul University-Cerrahpasa, 34320 Avcilar, Instanbul, Turkey
e Universidad de la Costa, Barranquilla, Colombia
f Universidad peruana de ciencias aplicadas, Lima, Peru
g Universidad Simon Bolivar, Barranquilla, Colombia

A R T I C L E I N F O

Article history:
Received 23 April 2020
Accepted 3 June 2020
Available online 24 June 2020

Keywords:
Artificial neural networks
Genetic programming
Predictor
Response
Self-Compacting concrete
Geopolymers

A B S T R A C T

There has been a persistent drive for sustainable development in the concrete industry. While there are series of encouraging experimental research outputs, yet the research field requires a standard framework for the material development. In this study, the strength characteristics of geopolymer self-compacting concrete made by addition of mineral admixtures, have been modelled with both genetic programming (GEP) and the artificial neural networks (ANN) techniques. The study adopts a 12M sodium hydroxide and sodium silicate alkaline solution of ratio to fly ash at 0.33 for geopolymer reaction. In addition to the conventional material (river sand), fly ash was partially replaced with silica fume and granulated blast furnace slag. Various properties of the concrete, filler ability and passing ability of fresh mixtures, and compressive, split-tensile and flexural strength of hardened concrete were determined. The model development involved using raw materials and fresh mix properties as predictors, and strength properties as response. Results shows that the use of the admixtures enhanced both the fresh and hardened properties of the concrete. Both GEP and ANN methods exhibited good prediction of the experimental data, with minimal errors. However, GEP models can be preferred as simple equations are developed from the process, while ANN is only a predictor.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author at: Department of Civil Engineering, Covenant University, Ota, Nigeria.
E-mail: swopaul2002@gmail.com (P.O. Awoyera).
https://doi.org/10.1016/j.jmrt.2020.06.008
2238-7854/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

On yearly basis, emission of greenhouse gases (CO₂ and NOx) during cement production is about 1.6 billion tons [1,2]. The biodiversity and environment are largely affected by the hazardous greenhouse gases, dust dispersion, particulate matter emissions, and many others effects [3,4]. For these reasons, other form of concrete involving no use of Portland cement and other new construction materials and technologies has been developed [5–7]. Cemen- tation in such mixture matrix is achieved using geopolymer materials.

The amount of harmful substances emission into the ecosystem is significantly conserved by the use of cement less concrete [8–13]. In OPC concrete, hydration of constituent material is achieved via reaction of calcium oxide in cement and hydroxide ion in water, however, aluminum-silicate precursors are aiding binding reaction in geopolymer concrete, in a process of geo-polymerization. Among several applications, geopolymer concrete has been incorporated in roller compacted concrete by researchers [14–20], and the studies ascertained the suitability of the materials. While there are numerous investigations on geopolymer concrete [21–24], the current study provides additional insights into the development geopolymor SCC. Enormous benefits can be seen when using SCC for modern day infrastructural development. The use of SCC ensures less energy consumption, labor, and construction cost [25–27].

The development of models for predicting strength characteristics of concrete is continually practiced, to avoid unnecessary repetition of test, and materials wastage. There are popular models like best fit curves (based on regression analysis), which are used for modelling concrete properties. However, due to nonlinearity nature of concrete [28], the models developed using regression analysis may not portray the true nature of the concrete. Also, regression models may not significantly measure the effect of constituent materials in concrete [29].

Artificial neural network (ANN) [30] and genetic programming [31] are some of the recent modeling techniques, which are found applicable to the civil engineering field. These approaches model responses based on incorporated input parameters, and the output models are verified with experimentat. ANN is capable of yielding suitable outputs in situations involving data classification, prediction, optimization and forecasting Parichatprecha and Nimityongskul (2009). For construction applications, GEP and ANN predicts the strength of concrete [29,33–41]; performance of bituminous mixes [42]; concrete durability [43–45].

Other applications of GEP and ANN have been found in recycled aggregate concrete [46], asphaltic and blast furnace slag [39,47]. Based on the available data in open literature, GEP and ANN demonstrate strong capacity to solve science and engineering problems. Despite the reported cases of modelling geopolymer concrete properties [48–51], the use of GEP and ANN have for predicting properties of geopolymer self-compacting concrete (GSCC) have not been overly explored. This study presents models, developed based on GEP and ANN techniques, predicting strength characteristics of GSCC. These models are expected to fit field applications involving the use of geopolymers.

2. Experimental work

2.1. Materials and method

Low calcium fly ash (ASTM class F), ground granulated blast furnace slag (GGBS) and silica fumes were the pozzolanic materials used. The materials emanate from production of steel, silicon and ferrosilicon. During preparations, the materials were ground onto fine particles, having sizes and specific surface of 16 µm and specific surface of 390 –420 m²/Kg, respectively. Table 1 shows the chemical oxide compositions of the pozzolans (obtained using X-ray florescence (XRF)). In the experimentation, fly ash was partially replaced (separately) with GGBS and silica fumes in as follows: 10%, 20%, 30%, and 5%, 10%, 15%, respectively.

Granite of 12 mm and reviver sand of sizes lesser than 4.75 mm aperture opening, were used as coarse aggregate and fine aggregate, respectively. The aggregates were preserved in a saturated surface dry (SSD) state, to avoid surface adsorption of moistures, and ensuring adequate bounding of aggregate

| Table 1 – Chemical oxide composition of the pozzolans. |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Oxides (%) | SiO₂ | Al₂O₃ | Fe₂O₃ | CaO | MgO | Na₂O | K₂O | P₂O₅ | SO₃ | TiO₂ | LOI |
| Fly ash | 49.0 | 27.25 | 13.5 | 1.79 | 0.89 | 0.32 | 0.46 | 0.98 | – | 1.54 | 0.64 |
| GGBS | 40.1 | 9.4 | 1.2 | 35.4 | 4.4 | 1.7 | – | – | – | – | 3.1 |
| Silica fume | 93.4 | 0.45 | 0.87 | – | 0.84 | 1.7 | – | – | – | – | – |

| Table 2 – A typical mix proportion for the geopolymer SCC. |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Mix | Fly ash (kg/m³) | Silica fume (kg/m³) | GGBS (kg/m³) | River sand (kg/m³) | Granite (kg/m³) | NaOH (kg/m³) | Na₂SO₄ (kg/m³) | W/G | Extra Water (%) | SP (%) |
| GSCC0 | 450 | – | 0 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 |
| GSCC1 | 405 | – | 45 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 |
| GSCC2 | 360 | – | 90 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 |
| GSCC3 | 270 | – | 135 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 |
| GSCC4 | 427.5 | 22.5 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 | 7 |
| GSCC5 | 405 | 45 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 | 7 |
| GSCC6 | 382.5 | 67.5 | 850 | 950 | 57 | 143 | 0.33 | 12 | 7 | 7 |
to the paste. This was achieved by initially soaking the aggregates in water, and afterwards air-dried in the laboratory. This helps to dry the surface of the aggregates and interpose water is still present in aggregate. Blocking effect, synonymous with SCC, was prevented by moderately utilizing coarse fractions of aggregate in the mixtures [52]. Also, the approach allows good flow ability of SCC mixtures. Other materials utilized are aggregate, conplast 430 superplasticizer (A modified Polycarboxylate based superplasticizer, of pH value 9.5 at 24 °C), and their properties. The following properties of the aggregates were determined: specific gravity (SG), water absorption (WA), fineness modulus (FM), bulk density (BD), aggregate crushing value (ACV), and aggregate impact value (AIV). The aggregate properties were determined following standard procedures [53–55], accordingly.

The alkaline solution used for the activation of the pozzolans was composed of NaOH and Na2SiO3 solutions, mixed together by Na2SiO3/NaOH ratio of 2.5.

![Typical ANN model or architecture.](image)

Fig. 1 – Typical ANN model or architecture.

2.2. Sample preparation and testing

The alkaline solution was prepared a day before use, so as to control temperature rise that occur as a result of polymerization reaction between the two compounds. However, there was need to cool down the alkali activators due to the exothermic reaction that occurs when sodium hydroxide pellets dissolve in water. A procedure to those available in published works [52,56,57] on geopolymers was adopted. As such, this will ensure the generality of use of the models being developed. Table 2 shows the mixes of the geopolymer SCC that were studied. The molarity of NaOH was kept constant at 12 M for all the geopolymer SCC produced, because this concentration of NaOH was reported as adequate for obtaining high strength in geopolymer concrete [52,57,58].

In geopolymer preparation, geopolymer solid or total powder content represent the total mass of fly ash and all other pozzolans. The water to geopolymer solid ratio (W/G) and total powder content were maintained at 0.33 and 450 kg/m³ respectively.

In SCC, slump is a very important workability test, it reveals the filling ability or passing ability quality of the mixture. In this study, the workability of the SCC mixes was assessed through slump flow, T50 cm, V-funnel, L-box, and J-ring tests. Based on the European Federation of National Associations Representing Producers and Applicators of Specialist Building Products for Concrete EFNARC (2002) classifications, slump flow, T50 cm, and V-funnel tests are for filling ability properties of SCC, while L-box and J-ring tests are for passing ability of SCC.

![GEP operation flowchart.](image)

Fig. 2 – GEP operation flowchart.
Sample preparation for hardened concrete tests includes 150 mm dimension cubes for compressive strength tests, 100 mm x 200 mm cylinders for split-tensile strength tests, and 100 mm x 100 mm x 500 mm prisms for flexural strength tests. The compressive strength, split-tensile strength, and flexural strength results reported were taken from an average strength of 3, 3, and 2 specimens respectively. A potable water was used for the mixing of the concrete constituents, in line with BS EN, 1997. The GSCC samples were cured in oven constantly at 70°C for 48 h, normally at this condition, geopolymers strength properties are enhanced. Reports by Nuruddin et al. [57] and Ushaa et al. [52] suggest that a temperature above 70°C and curing period beyond 48 h could reduce the strength of geopolymers. This approach is practicable, sustainable and economical, mainly because this kind of concrete is best applied in precast plant, where all the required design conditions can be put in place. After the oven curing, the cured in an ambient temperature condition until the test dates of 7, 14 and 28 days. (Figs. 1–3)

3. Modelling concrete strength properties

3.1. ANN techniques

The principle of artificial neural network has its relevance in solving diverse problems in science and engineering. It is commonly introduced for developing predictive statistical models for complex processes which are fundamentally nonlinear systems. A number of complex system behavior can be simulated using ANN [61]. The ANN operation is much more like a typical human brain, with components ascribed as neuron. The concept of ANN could also be likened to the way a computer operates, as in “garbage in, garbage out”, because it uses input factors to simulate the system process for determination of the output factors. In other words, ANN model development requires input and output components, where the latter is totally influenced by the former [62]. The ANN principle is systematic, in that, the neurons are linked together, and each link possesses its own weight [47]. Thus, the weight multiplied by the transmitted signals in the network gives the solution to the model. A typical ANN network architecture comprises of the input layer, hidden layers and the output layer [42]. The input and output layers are predefined before data training, while the hidden layer is determined based on trial and error. A typical ANN architecture model is presented in Fig. 4. The model consists input factors (x₁, x₂, x₃, x₄ ---- xₙ), having weights (W₁, W₂, W₃, W₄ ---- Wₙ), respectively. The remaining processing mechanism is sigmoid or sum function (sigmoid) that finally influences the output(s). Thus, a general description of the analogy is given in Eq. 1,

\[
\text{output} = \sum_{n=0}^{n} X_n W_n - b
\]

Where Wₙ = weight, and Xₙ = input, and b = bias.

The potential of the ANN technique to predict meaningful responses has been displayed in studies, irrespective of whether the data being processed are full of errors or maybe incomplete [63,64]. The ANN technique basically comprises of three processes which are learning, training and model performance testing. At the training stage, there is an adjustment of the weights and biases in the network (supervised or unsupervised), so as to accurately determine the output variables. In the supervised training, already completed experimental data are utilized for model development, while the unsupervised training does not use real input and output data.
At the testing stage, the network will reply to the input
without necessarily affecting overall network architecture
[42].

At every stage of the ANN construction, a series of trial and
error is done, before the best network can be selected. A study
by Alshihri has shown that the trial and error process could be
prolonged, so as to generate a number of networks, after which
the process can be stopped, and tested at different stages of
the learning. This process may be repeated by reanalyzing the
network using different sets of random weights. Finally, a suit-
able ANN architecture is the model that possesses the least
mean square error (MSE) between the predicted output and
actual outputs database.

The ANN model development was performance using
MATLAB software. The error backpropagation, which adopts
training and recall algorithm [65] was used for the model
development. According to Lee [62], this approach could solve
problems involving multiple variables (multidimensional).

The input and output dataset used for model development in
this study are presented in Table 3. Feed forward back propa-
gation model, which is based on the Levenberg–Marquardt (LM)
multi layer method, available in MATLAB was used for train-
ing the data. A data set including 105 data samples obtained
from this study and other related experiments were utilized for
developing the ANN models. The input data were divided into
three parts, seventy percent of the data were used at the
learning phase, and fifteen percent each for the testing and
validation phases, respectively. As against manual division
with maximum values, normalizing of the data was done by
default in MATLAB. The process was repeated, based on
trial and error, before the suitable model was selected, which
satisfied the MSE criteria.

3.2. GEP techniques

Gene expression programming (GEP), a subset of genetic algo-
rithm, is a modelling tool developed by Koza [66]. GEP operates
as an independent domain for finding solutions to problems
or an approximate solution. It was found on the crossover
and mutation genetics of Darwinian reproduction and sur-
vival principle. GEP can precisely predict the given phenotype
doing sequence (in form of Karva language). A flowchart
showing the mode of operation of GEP is presented in Fig. 5.

![Expression tree for compressive strength](image)

Generally, GEP operates in form of computer program, having
varying sizes and shape codes in fixed length linear chromo-
somes. Thus, the chromosomes are having many genes, and
a gene is encoded in form of mini program. The mutation,
recombination and transportation of the gene is achieved via
its functional and structural organization [67,68].

In this study, the data utilized for the GEP modelling com-
prised results of the strength tests, and in addition with data
sourced from literature. Specifications adopted in the GEP op-
eration are presented in Table 4. Modeling in GEP takes the
general format as:

$$M_i = \sum_{j=1}^{k_i} \left(F - |K(i,j) - T_j| \right)$$ \hspace{1cm} (2)

Where M_i is the fitness function, M is the data selection range,
$K(i,j)$ is the value returned by the individual chromosome i
for fitness case j (out of K, fitness cases), and T_j is the target value
for fitness case j. If $|K(i,j) - T_j|$ (the precision) ≤ 0.01, then
the precision = 0, and $M_i = M_{\text{max}} = K_i F$. In this study, M was taken
100, and M_{max} is then 1000. This fitness function is capable of
generating an optimal solution without any external input.

Altogether, a total of 412 data sets were utilized in the
model development, out of which 80% was utilized for train-
ing/validation of the GEP model, and 20% of the data set were
used for the testing of the model.

$$R = \frac{\sum_{i=1}^{N} (m_i - \bar{m}_i)(p_i - \bar{p}_i)}{\sqrt{\sum_{i=1}^{N} (m_i - \bar{m}_i)^2 \sum_{i=1}^{N} (p_i - \bar{p}_i)^2}}$$ \hspace{1cm} (3)
was increase in Table 4 values. The results showed that the performance of the GSCC mixes were significantly improved with the increase of the fume content. The results also showed that the average workability and the limits were increased with the increase of the fume content. The limits of the GSCC mixes were higher than the limits recommended by the EFNARC (2002). As can be seen from the Figures, all the specimens, except specimen without GGBS and silica fume, were passed the workability requirements. The results showed that the viscosity of the mixtures was adequate. In mix GSCC0, which serves as the control geopolymer, the V-funnel value was lower than the limits recommended (Fig. 6d), this could be attributed to its higher viscosity and segregation [57]. Mainly, two approaches may be considered for controlling the tensile strength properties of geopolymers having no GGBS and silica fume, one is to increase superplasticizer content, and/or increase the water content [59].

The strength properties of all the tested mixes increased with increasing curing age through 28 days, this kind of performance is a common attribute of an OPC mix. The 28 days strength properties of a geopolymer containing 30% GGBS as replacement of fly ash (GSCC3) was higher than other mixes. The increased admixtures content as replacement of fly ash plays a vital role in reducing the porosity of the matrix, which in turn increased the strength properties. In other mixture category, a geopolymer mix containing 10% silica fume as replacement for fly ash (GSCC5) developed the second higher strength properties. However, when silica fume content goes beyond 10%, the strength properties of the mix decreased. The decline in strength properties of the specimens with large silica fume content may be attributed to a slower pozzolanic reaction in the matrix, this significantly affects the rate of hydration as well. There was a measurable increase in strength properties of specimens containing admixtures than control geopolymer specimen, this suggest that admixtures such as GGBS and silica fume are effective for production of GSCC. (Figs. 7,8)

4. Results and discussion

4.1. Fresh and hardened properties of the concrete

Table 5 shows the experimental results of the workability of fresh GSCC, investigated through slump flow, T50 cm flow, L-box test, V-funnel and J-ring tests, and the hardened properties (compressive strength, split-tensile strength and flexural strength). The workability values obtained from the tests were compared with the recommended acceptable limits by EFNARC (2002). As can be seen from the Figures, all the specimens, except specimen without GGBS and silica fume (GSCC0), passed the workability requirements, which thus indicated that the viscosity of the mixtures was adequate. In mix GSCC0, which serves as the control geopolymer, the V-funnel value was lower than the limits recommended (Fig. 6d), this could be attributed to its higher viscosity and segregation [57]. Mainly, two approaches may be considered for controlling the viscosity (flowability) of geopolymers having no GGBS and silica fume, one is to increase superplasticizer content, and/or increase the water content [59].

The strength properties of all the tested mixes increased with increasing curing age through 28 days, this kind of performance is a common attribute of an OPC mix. The 28 days strength properties of a geopolymer containing 30% GGBS as replacement of fly ash (GSCC3) was higher than other mixes. The increased admixtures content as replacement of fly ash plays a vital role in reducing the porosity of the matrix, which in turn influenced an increase in the strength properties. In other mixture category, a geopolymer mix containing 10% silica fume as replacement for fly ash (GSCC5) developed the

RMSE \[\text{RMSE} = \frac{1}{N} \sum_{i=1}^{N} (m_i - p_i)^2 \] (4)

AAE \[\text{AAE} = \frac{1}{N} \sum_{i=1}^{N} \frac{|m_i - p_i|}{m_i} \times 100 \] (5)

Where N is sample numbers, mi is actual value, pi = predicted value, m, is the average actual values, and pi is average predicted values.

Overall, three models were developed for solving compressive strength, split tensile strength and flexural strength of GSCC, respectively.

4.2. ANN modelling results

A model for predicting the compressive strength, split-tensile strength, and the flexural strength of geopolymer self-compacting concrete was developed, after a series of trial and error. For the type of concrete produced, the input data, which directly affects the concrete performance, were fly ash, GGBS, silica fume, slump flow, T50 cm flow, L-box, V-funnel, J-ring and curing age. While the outputs factors are compressive strength, split tensile strengths, and flexural strength. The output data were the concrete strength parameters obtained at 7, 14, and 28 days testing regimes (age). The ANN architecture that best model the performance of the concrete, and having the lowest error (MSE) value is presented in Fig. 9. There are nine neurons in the input phase, sixteen neurons in the hidden layer and three neurons in the output layer of the model. Table 6 shows the details of correlation and error analysis of the selected model. (Fig. 10)

From results in Table 6, it can be seen that the selected model fulfills the requirement of error performance in ANN model. The model possess R² closing to 1 and a smaller MSE, so it is an indication that there exist a perfect strong correlation between the predicted and the actual data. It is known that a good ANN model should possess higher R² value or smaller MSE [30], and such model is perfect predicting the behavior of a system. Both the MSE and R² were determined based on the following mathematical expressions [39,69]:

\[\text{MSE} = \frac{\sum_{i=1}^{n} (a_i - t_i)^2}{n} \] (6)

\[R^2 = \frac{\sum (a - \bar{t})^2}{\sum (a - \text{mean})^2} \] (7)
Table 5 – Fresh and hardened properties of geopolymer SCC.

<table>
<thead>
<tr>
<th>Fly ash</th>
<th>GGBS</th>
<th>Silica fume</th>
<th>Slump flow</th>
<th>T50cm</th>
<th>V-funnel</th>
<th>L-box</th>
<th>J-ring</th>
<th>Age</th>
<th>Compressive strength</th>
<th>Split-tensile strength</th>
<th>Flexural strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>0</td>
<td>0</td>
<td>650</td>
<td>4.5</td>
<td>14</td>
<td>0.88</td>
<td>4.5</td>
<td>7</td>
<td>29.11</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>450</td>
<td>0</td>
<td>0</td>
<td>650</td>
<td>4.5</td>
<td>14</td>
<td>0.88</td>
<td>4.5</td>
<td>14</td>
<td>32.89</td>
<td>3.25</td>
<td>3.86</td>
</tr>
<tr>
<td>405</td>
<td>45</td>
<td>0</td>
<td>660</td>
<td>4</td>
<td>12</td>
<td>0.94</td>
<td>4</td>
<td>7</td>
<td>28.96</td>
<td>1.78</td>
<td>1.67</td>
</tr>
<tr>
<td>405</td>
<td>45</td>
<td>0</td>
<td>660</td>
<td>4</td>
<td>12</td>
<td>0.94</td>
<td>4</td>
<td>14</td>
<td>32.44</td>
<td>3.11</td>
<td>3.71</td>
</tr>
<tr>
<td>360</td>
<td>90</td>
<td>0</td>
<td>670</td>
<td>4</td>
<td>11.5</td>
<td>0.96</td>
<td>3.5</td>
<td>7</td>
<td>27.74</td>
<td>1.38</td>
<td>1.27</td>
</tr>
<tr>
<td>360</td>
<td>90</td>
<td>0</td>
<td>670</td>
<td>4</td>
<td>11.5</td>
<td>0.96</td>
<td>3.5</td>
<td>14</td>
<td>32</td>
<td>2.97</td>
<td>3.5</td>
</tr>
<tr>
<td>360</td>
<td>90</td>
<td>0</td>
<td>670</td>
<td>4</td>
<td>11.5</td>
<td>0.96</td>
<td>3.5</td>
<td>28</td>
<td>36.26</td>
<td>4.56</td>
<td>4.63</td>
</tr>
<tr>
<td>270</td>
<td>135</td>
<td>0</td>
<td>680</td>
<td>4.5</td>
<td>10.5</td>
<td>0.95</td>
<td>3</td>
<td>7</td>
<td>24.67</td>
<td>1.04</td>
<td>1.03</td>
</tr>
<tr>
<td>270</td>
<td>135</td>
<td>0</td>
<td>680</td>
<td>4.5</td>
<td>10.5</td>
<td>0.95</td>
<td>3</td>
<td>14</td>
<td>31.11</td>
<td>2.83</td>
<td>3.26</td>
</tr>
<tr>
<td>427.5</td>
<td>0</td>
<td>22.5</td>
<td>660</td>
<td>3</td>
<td>9.3</td>
<td>0.89</td>
<td>5</td>
<td>7</td>
<td>31.66</td>
<td>2.82</td>
<td>2.82</td>
</tr>
<tr>
<td>427.5</td>
<td>0</td>
<td>22.5</td>
<td>660</td>
<td>3</td>
<td>9.3</td>
<td>0.89</td>
<td>5</td>
<td>14</td>
<td>33.33</td>
<td>3.51</td>
<td>4.1</td>
</tr>
<tr>
<td>427.5</td>
<td>0</td>
<td>22.5</td>
<td>660</td>
<td>3</td>
<td>9.3</td>
<td>0.89</td>
<td>5</td>
<td>28</td>
<td>36</td>
<td>4.2</td>
<td>4.28</td>
</tr>
<tr>
<td>405</td>
<td>45</td>
<td>3.5</td>
<td>680</td>
<td>3.5</td>
<td>9.5</td>
<td>0.92</td>
<td>5</td>
<td>7</td>
<td>30.74</td>
<td>3.32</td>
<td>3.27</td>
</tr>
<tr>
<td>405</td>
<td>45</td>
<td>3.5</td>
<td>680</td>
<td>3.5</td>
<td>9.5</td>
<td>0.92</td>
<td>5</td>
<td>14</td>
<td>35.56</td>
<td>3.88</td>
<td>4.4</td>
</tr>
<tr>
<td>382.5</td>
<td>0</td>
<td>67.5</td>
<td>690</td>
<td>4.7</td>
<td>11</td>
<td>0.96</td>
<td>5.4</td>
<td>7</td>
<td>31</td>
<td>2.86</td>
<td>2.86</td>
</tr>
<tr>
<td>382.5</td>
<td>0</td>
<td>67.5</td>
<td>690</td>
<td>4.7</td>
<td>11</td>
<td>0.96</td>
<td>5.4</td>
<td>14</td>
<td>33.78</td>
<td>3.62</td>
<td>4.2</td>
</tr>
<tr>
<td>382.5</td>
<td>0</td>
<td>67.5</td>
<td>690</td>
<td>4.7</td>
<td>11</td>
<td>0.96</td>
<td>5.4</td>
<td>28</td>
<td>35.56</td>
<td>4.38</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Fig. 8 – Compressive strength (a) Train data set (b) Test data set.

Fig. 9 – Split-tensile strength (a) Train data set (b) Test data set.
where \(n \) is the total data number, \(o \) is the output, \(t \) is the target output, and \(o_{\text{mean}} \) is the average value of the network output.

Based on the performance of the selected network architecture, thus, it is clear that there exists strong agreement between the predicted data and actual experimental data obtained on GSCC. The selected model has capability to generalize both input and output data of the tested concrete with a high level of accuracy in the predictions. In addition, another fact that backs the section of this model is that it has a minimal corresponding percent error for the predicted strength, and in statistical term, the prediction with this model can be reliable. This result shows there is absolute reliability in the model performance, because of closeness of the datasets (predicted and actual). Overall, it is an indication that the selected model can produce accurate response for a system with a strong confidence level.

4.3. GEP model results

This study developed three models for each of the GSCC strength parameter investigated. Similar predictor and responses used in the ANN model were also utilised for the GEP model. A typical dispersion of data during GEP analysis is shown in Fig. 11. Models for the responses were obtained by reading the expression trees, bottom left to the right side.

Model expression trees for the compressive strength, split tensile strength and flexural strength are shown in Figs. 12–14, respectively. Also, comparison between predicted and the actual experimental data (train and test/validation datasets), for compressive strength, split tensile strength and flexural strength are shown in Figs. 15–17, respectively. From these Figures, it can be seen that there is a good correlation between the model prediction and the actual experimental data. This thus shows the adequacy of the model for further applications. Based on the error values presented for compressive strength, split tensile strength and flexural strength in Tables 7–9, respectively, it is shown that \(R \) values were more than 0.64 limit \([70]\), therefore the model can be adjudged suitable for application in the geopolymer concrete.

In formulating expressions for compressive strength, split tensile strength and flexural strength, using the expression trees, the following notations were adopted:

- \(C_s \) = compressive strength, \(S_{s} \) = split-tensile strength, \(F_s \) = flexural strength, \(F \) = fly ash, \(T_50 = T_50 \) flow, \(V = V \) funnel flow, \(S_f \) = Silica fume, \(S \) = slump flow, \(J = J \)-ring, \(A = A \)gey, \(L = L \)-box, \(G = GGBS \)

| Table 6 – Correlation and error analysis of the ANN model selected. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Final Model | Training | Test | Validation |
| | MSE | \(R^2 \) | MSE | \(R^2 \) | MSE | \(R^2 \) |
| 9–8–8–3 | 0.00603 | 0.97 | 0.00566 | 0.89 | 0.00564 | 0.96 |

Fig. 10 – Flexural strength (a) Train data set (b) Test data set.

Fig. 11 – Typical dispersion of data during GEP analysis.

Fig. 12 – Expression tree for compressive strength.
The developed models for compressive strength, split tensile strength and flexural strength are presented as follows:

\[C_s = \frac{1}{\sqrt{F}}(4.96A - (T_{50} V)) - (G + S_f) - (S + J) \] (8)

\[S_s = \frac{(V - 5.88) + \left(\sqrt{(15.13A)}\right)^{\frac{1}{2}}}{} \] (9)

5. Conclusion

This study focuses on modelling the strength properties of GSCC containing mineral admixtures, using genetic programming and artificial neural networks. The following conclusions were drawn from the study:

1. From the assessment of GSCC fresh properties, results showed that the samples prepared with mineral admixtures satisfied the EFNARC limits. The control mixture (made of conventional material) also met the requirements, except that V-funnel result exceed limit of 12 s set by the standard. Such performance could be a result of high viscosity and segregation of the mixture.

2. There was increase in strength properties of all samples with increasing curing regimes, and generally, samples prepared with mineral admixtures developed strengths comparable to the control mixture.
In the model developed using GEP and ANN, it has been shown that both the predicted data and actual experimental dataset possess significant uniqueness. The results of compressive strength, split-tensile strength and flexural strength have been compared based on the values of MSE and R². It is thus clear that the GEP and ANN models developed for the GSCC are reliable, and have the capacity to measure the concrete properties at somewhat 97% confidence level. Overall, GEP model is preferred as it gives mathematical expression for solving the investigated strength parameters.

Table 7 – Statistical data: compressive strength.

<table>
<thead>
<tr>
<th>Index</th>
<th>Train data</th>
<th>Test data</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>1.09</td>
<td>3.33</td>
</tr>
<tr>
<td>MSE</td>
<td>1.19</td>
<td>11.10</td>
</tr>
<tr>
<td>MAE</td>
<td>0.85</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Table 8 – Statistical data: split-tensile strength.

<table>
<thead>
<tr>
<th>Index</th>
<th>Train data</th>
<th>Test data</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.30</td>
<td>0.55</td>
</tr>
<tr>
<td>MSE</td>
<td>0.09</td>
<td>0.30</td>
</tr>
<tr>
<td>MAE</td>
<td>0.26</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 9 – Statistical data: flexural strength.

<table>
<thead>
<tr>
<th>Index</th>
<th>Train data</th>
<th>Test data</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.45</td>
<td>0.81</td>
</tr>
<tr>
<td>MSE</td>
<td>0.20</td>
<td>0.66</td>
</tr>
<tr>
<td>MAE</td>
<td>0.34</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Conflict of interest

The authors declared that there are no conflict of interest.
REFERENCES

