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Abstract—There are different tools to estimate the end to
end available bandwidth (AB). These tools use techniques which
send pairs of packets to the network and observe changes in
dispersion or propagation delays to infer the value of the AB.
Given the fractal nature of Internet traffic, these observations
are prompt to errors affecting the accuracy of the estimation.
This article presents the application of a clustering technique to
reduce the estimation error due to wrong observations of the
available bandwidth in the network. The clustering technique
used is K-means which is applied to a tool called Traceband that
is originally based on a Hidden Markov Model to perform the
estimation. It is shown that using K-means in Traceband can
improve its accuracy in 67.45% when the cross traffic is about
70% of the end-to-end capacity.

I. INTRODUCTION

The estimation of the available bandwidth from end to end
on a network connection can be used to evaluate or improve
the performance of network applications [1] and [2]. Prasad
et al. [3] indicate that the available bandwidth can be used
to optimize the end to end network performance, routing in
overlay networks, and Peer to Peer network file sharing. This
value can be also used to define the Quality of Service of
the network; to change the transmission rate according to the
availability of the channel in a transport layer protocol; to
perform traffic engineering in network management applica-
tions; to achieve the performance needed in content delivery
networks, including multimedia (streaming) in overlapping
virtual networks; among other functions of different network
applications.

The available bandwidth of an end-to-end path is a time-
varying metric related to the individual utilization of each link
throughout the path. Defining T as the averaging timescale
of the available bandwidth [3], the average utilization for a
sample during T , is given by

ui(t, t+ T ) =
1

T

Z t+T

t
ui(s)ds (1)

where 0  ui(t, t+T )  1. For a link i with capacity Ci, the
AB of the link in the interval (t,t+T ) can be defined as the
average non-utilized capacity during the time T . That is,

ABi(t, t+ T ) = Ci[1� ui(t, t+ T )] (2)

For an end-to-end path with H hops, the available bandwidth
is given by the link with minimum non-utilized capacity in
the path. That is, AB(t, t+T ) = mini=1..HABi(t, t+T ). In
the literature, the link with the minimum capacity is called
the narrow link and the link with the minimum available
bandwidth is called the tight link, which is considered the
bottleneck of the path and the link that determines the end-to-
end available bandwidth.

Monitoring and estimation of the available bandwidth has
grown from a regular activity of a network administrator
(expert or amateur) to a more complex research area where
mathematical models or applied statistics are implemented
in estimations tools, techniques and algorithms. Two main
available bandwidth estimation approaches have been reported.
The first approach is called the Probe Gap Model (PGM)
which bases the estimation on the gap dispersion between two
consecutive probing packets at the receiver. That dispersion is
used to estimate the amount of cross-traffic in the tight link
during T which is subtracted from the Capacity to estimate
the AB in the path. Examples of tools in this category are
Spruce [4], Delphi [5], IGI [6], and Traceband [7]. The second
approach called Probe Rate Model (PRM) is based on the idea
of induced congestion, in which the turning point (available
bandwidth) is determined by the variation in the probing
packet rate from sender to receiver. Pathload [8], TOPP [9],
and Pathchirp [10] are examples of tools utilizing this ap-
proach. Each tool has trade offs in terms of the estimation
accuracy, convergence time and intrusiveness of the tool to
perform the estimation.

One of these tools, called Traceband, uses the concept of
Hidden Markov Chains to model the network and perform
the estimation based on a Probe Gap Model approach [7].
Traceband has shown to perform fast estimations without in-
creasing the probing packet overhead in the network. However,
its accuracy still need to be improved as shown in [11] and [7].
Traceband average error goes around 10% for a 30% congested
link. This article presents a variant of Traceband based on a
clustering technique called K-means, that is shown to reduce
the estimation error of the tool when the network is highly
congested.
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Fig. 1. Dispersion of probing packets due to cross traffic

This document is organized as follows. Section II shows
a general description of Traceband. Section III presents k-
means as the clustering technique to be used to filter wrong
estimations of the available bandwidth. Section IV presents the
modification performed to the original version of Traceband
in order to embed a K-means algorithm as a way to reduce
the estimation error of the tool. Section V compares the
performance of Traceband with HMM and Traceband with
K-means using a fully controlled testbed with synthetically
generated traffic. Finally, Section VI presents the conclusions
of the paper.

II. TRACEBAND

Traceband [7] is an available bandwidth estimation tool that
builds a Hidden Markov Model of the available bandwidth
in the end-to-end connection. Traceband uses the Probe Gap
Model to perform its estimation. This model uses the infor-
mation obtained when a packet pair is sent to the network
and its inter-departure time is affected by cross traffic arriving
to intermediate nodes. The information is collected at the
reception of the packet pairs and after measuring its inter-
arrival time. More specifically, a packet pair is sent from host
to host (end-to-end) with a certain space �Input and due to
cross traffic, that space between packets is modified (�Output)
when they reach the destination (See Figure 1). Assuming a
single bottleneck in the end-to-end path and fluid traffic, the
available bandwidth can be calculated by Equation 3 where
C is the capacity of the end-to-end path. See [2], [1], [12],
and [3] for a more detailed explanation of available bandwidth
estimation methods and tools.

AB = C ⇥
⇢
1� �Output��Input

�Input

�
(3)

It is shown in [7] that Traceband is a fast tool that introduces
low overhead to the network and that has a relatively low
estimation error (around 10%). This error is close to other tools
estimation errors according to the literature. Since Traceband
has shown to perform fast and low-overhead estimations with
similar accuracy when compared to other tools, this paper is
focused on using a clustering technique to reduce traceband
estimation error while keeping its overhead and estimation

time unchanged. Intuitively, since every single estimation is
affected by difficulties in the network and in the hosts [13],
a set of estimations can be grouped to find a representative
estimate to be averaged with other similar estimates. This
clustering is shown in the following sections to be an effective
way to filter wrong single estimates of the available bandwidth.

III. CLUSTERING

A clustering algorithm creates a partition of data sets into
clusters or subsets. Each element in the cluster has a common
characteristic or pattern with other cluster elements. Clustering
is computationally simpler than other grouping techniques
such as the construction of a dendrogram with large data
sets. A key step in the clustering algorithm is the selection
of the membership criteria which also determines the number
of groups to be created. According to Dubes et al. [14] groups
can be defined by optimizing a criterion function as a result of
running several times the clustering algorithm with different
starting states. Jain et al. [15] shows the steps involved in a
typical pattern clustering activity: 1) pattern representation, 2)
pattern proximity measure, 3) clustering, 4) data abstraction,
and 5) assessment of output. The loop mentioned by Dubes
goes from step 3 back to step 1.

One of the most popular, simpler and widely used clustering
methods is K-means [?]. The K-means algorithm, developed
by MacQueen in 1967, follows a simple procedure for classi-
fying a set of objects in a given number K of clusters. In the
algorithm, the membership of any element is determined by its
proximity to the cluster center (called centroid). That centroid
is the average of all elements in the cluster. The algorithm can
be depicted in five steps:

1) Select the number of K clusters.
2) Randomly create K groups and determine the K cen-

troids.
3) Determine the centroid each element belongs to (that

whose distance to the element is the nearest).
4) Calculate the new K clusters and centroids.

Read tm; /* Traceband total running time */ 
do 
{ 

Receive a train of |O|=30 packet pairs; 
conv_thresh=0.0001; 
For each packet pair at time t=1,..,T 
      { rel_dispersiont= ξt = (Δout- Δin) / Δin; } 
Observ_seq = O = {ξ1, ξ2,  …  ,  ξT }; 
K =   |O|/4;  // Initial number of clusters 
new_O = k_means(O, |O|, K, conv_thresh); 
For each new_ξt in new_O 
     { AB_est= C*abs(1- new_ξt); } 
Print AB=mean(C*abs(1- new_ξt));  

} while running_time <= tm; 
 

Fig. 2. Traceband with K-means receiver pseudo code.
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Fig. 3. Testbed used in the performance evaluation of Traceband with K-means and with HMM.

5) Repeat steps 3 and 4 until the clusters does not signifi-
cantly change (or other convergence criteria)

However, the K-means algorithm has some disadvan-
tages [?]. On one hand, the optimal clustering depends on
the selection of the initial groups or centroids. On the other
hand, the convergence criteria is not guaranteed and for large
data sets the number of iterations to converge can be very large
with the corresponding computational complexity.

There are different applications where K-means can be im-
plemented. As it is shown in [16], K-means can be used in data
mining, knowledge discovery, data compression and vector
quantization, and pattern recognition and pattern classification.
It is specially useful in medicine applications such as image
processing for diagnosis, finding patterns in mortality rates
from different types of cancer, among other.

IV. TRACEBAND WITH K-MEANS

The motivation of using a clustering technique in Traceband
was to reduce the error caused by incorrect single estimates of
the available bandwidth. The hypothesis was that by clustering
them and adjusting their values to a common pattern would
help to obtain average values with less variability. Since
Traceband was written in ANSI C, an implementation of K-
means by Roger Zhang [17] was inserted within Traceband
code. Given that Traceband performs the estimation at the
receiver side of the application [7], the K-means algorithm
was part of that code as it is depicted in Figure 2. The pseudo
code shown is similar to the original Traceband based on
the Hidden Markov Model and shown in [7]. A train of 30
packet pairs is sent from sender to receiver. The observation
sequence is calculated at the receiver as the relative dispersion
of the packet pairs according to the fraction shown as part
of Equation 3. Those observations are clustered in groups
and are sent to the clustering algorithm which returns new
observation values that are adjusted according to the cluster
pattern. With the new values, a single averaged available
bandwidth estimation is calculated. Traceband is repeatedly

run during tm seconds to provide consecutive monitoring of
the available bandwidth.

The implementation with K-means requires an initial num-
ber of clusters which is set to a fourth part of the number of
observations. This is because we expect to cluster at least four
groups of observations (with their corresponding centriods)
from the beginning. The algorithm convergence criteria is set
to 0.0001 as a threshold error between interactions.

V. PERFORMANCE EVALUATION

In this section, Traceband with K-means and Traceband with
HMM (Hidden Markov Model) are evaluated and compared.
The evaluation is performed using a completely controlled
environment shown in Figure 3. This testbed is made of two
Linux computers hosting both traceband versions and iden-
tified as Traceband snd and Traceband rcv for the sending
and receiver sides of the application respectively. There are
also two Linux computers which congest the network with
synthetically generated cross traffic using an open source tool
called MGEN [18]. Cross traffic is generated from Cross traffic
sender to Cross traffic receiver. As it is shown in Figure 3,
there are two networks connected by a 100 Mbps router.

To evaluate the performance Traceband with k-means
against Traceband with HMM, three different scenarios were
set in a 70% congested network: one using a Poisson distribu-
tion of cross traffic, one using a periodic (uniform) distribution
and one using bursty cross-traffic where the length of the
bursts and the burst interarrival times are both exponentially
distributed with averages of 5 and 10 seconds, respectively.
Both Traceband and MGEN generate UDP traffic with packet
sizes of 1490 bytes.

Using the described scenarios, ten experiments where run
for each scenario and the accuracy of each version of the tool
was estimated as the relative error according to Equation 4,
where mAB is the value given by Traceband and µAB is the



Tool Periodic Poisson Burst
% of error in Traceband with HMM �13.54% �13.57% �25.11%
% of error in Traceband with K-means �4.21% �1.27% �14.13%

% of improvement 68.91% 90.66% 42.77%

TABLE I
AVERAGE ESTIMATION ERROR OF TRACEBAND WITH HMM AND WITH K-MEANS FOR A 70% CONGESTED PATH.
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Fig. 4. Traceband estimation error for a 70% congested path with periodic
traffic.

expected AB value.

error =

����
mAB � µAB

µAB

����⇥ 100% (4)

Table I shows the results as averages of the ten experiments
run for each network scenario. It is important to note that each
experiment is by itself an average of AB estimates generated
by single packet pairs. Those single estimates are the ones
clustered to generate each one of the ten results. According
to the Table, Traceband with K-means performs better than
Traceband with HMM for all types of cross traffic. When
averaging the percentage of improvement for all scenarios,
it can be said that Traceband with K-means produces 67.45%
better estimations than the original version of Traceband when
the network is highly congested (at 70% of the en-to-end
capacity). Negative values indicate that Traceband always
overestimates the bandwidth availability. As expected, the
estimation error with Bursty cross traffic is the higher than
with Poisson and Periodic traffic. However, the fact that the
average available bandwidth when using Poisson traffic is
better than when using Periodic traffic, was one reason to
perform a deeper analysis by observing the variability of the
results and plotting confidence intervals. To do that, the t-
student distribution was used to calculate and plot confidence
intervals of 95% for each scenario.

4 Figure 4 shows the intervals when the path is congested
with a 70% periodic cross traffic. In both cases it is shown
that the intervals are similar which means that the variability
of the results are almost the same. It is shown in the graph
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Fig. 5. Traceband estimation error for a 70% congested path with Poisson
traffic.

that Traceband with K-means has an interval that includes 0%
estimation error which means that using that technique the
tool can perform error-free estimations. This behavior does
not happen with the original Traceband in this scenario.

Figure 5 shows the intervals when the path is congested
with a 70% Poisson cross traffic. Similar to the experiments
in periodic traffic, the variability of the estimation error is
very similar in both versions of Traceband with a the worst
average value in the case of Traceband with HMM. When
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Fig. 6. Traceband estimation error for a 70% congested path with bursty
traffic.



comparing the variability of the estimations using Traceband
with K-means in Figures 4 and 5, it can be observed that
although the average estimation error in the case of Poisson
cross traffic is better that in the case of periodic traffic,
the confidence intervals show that both estimation errors are
statistically almost the same.

Finally, Figure 6 shows the intervals when the path is con-
gested with a 70% bursty cross-traffic where the length of the
bursts and the burst inter-arrival times are both exponentially
distributed with averages of 5 and 10 seconds, respectively.
In this case, although the estimation error is improved by
Traceband with K-means, its variability is higher. In the worst
case, however, the estimation is around 5 units better than
Traceband with HMM. The best estimation error (lower limit
in the interval) is close to zero in Traceband with K-means and
close to 15% in Traceband with HMM. Therefore, although
the variability is higher, the accuracy is considerably improved
in the case of Traceband with K-means.

VI. CONCLUSIONS

It has been shown that under highly congested end-to-end
paths, Traceband based on a clustering technique called K-
means performs, in terms of estimation error, on average
67.45% better that the original Traceband based on a Hidden
Markov Model approach. On average, the estimation error
under a 70% congested path does not go further than 25%
when estimating with HMM and 15% when estimating with
K-means. The best traffic scenario is that of Poisson traffic
and the worst is that of Bursty traffic (which is the closest
scenario to real Internet connections).

When looking at 95% confidence intervals, a bursty traffic
scenario shows a higher variability in the estimation error
when using Traceband with K-means than the variability
shown in Traceband with HMM. In spite of that, the worst
case estimation error is better in the K-means version than the
worst case in the HMM version.

This work shows that by using a clustering technique on
an available bandwidth estimation tool, the estimation error
can be reduced. This fact opens possibilities to implement a
more complex clustering method or to implement k-means in
other estimation tools in order to overcome the effect of wrong
observations made by probing packets sent to the network.
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