The temperature gradient of cereals as an optimization parameter of the milling process in hammermills

Juan José Cabello Eras; Alexis Sagastume Gutiérrez; Mario Javier Cabello Ulloa

Abstract
The wear degree of knives in hammermills strongly influences electricity consumption, productivity, and total operating costs. Currently, the timely replacement of the knives set is decided based on visual inspections, a feedstock load or a lifespan defined, the electric demand of the mill as compared to the limit of the motor driving it, or the vibrations of the hammermill. These approaches present different shortcomings. This study proposes the temperature gradient of the feedstock during the milling process as an indicator to monitor the wear degree of knives. The temperature gradient was implemented in a hammermill milling maize to compare two operating modes. In the conventional operating mode, the knives set mills with one edge during its lifespan, replacing the set once the electricity demand approaches the limit capacity of the electric motor driving the mill, or until the vibrations increase over safety limits. Moreover, in the proposed operating mode the temperature gradient is used to define the timely replacement/rotation of the knives edge. In this case, the four edges of the knives are used. The electricity consumption, productivity, and temperature gradient of the process were measured during the milling of ten maize loads of 2500 tons each. These data were used to characterize the performance of the hammermill, and the influence of the temperature gradient on its operational performance. As a result, a temperature gradient of 6.5 °C was defined as the optimal value to change the rotational direction or replacing the knives set in the hammermill assessed. As compared to the traditional operation approach, the use of the temperature gradient resulted in a reduction of the electricity consumption of 32%, and the greenhouse gas emissions by 37%, while reducing the total costs by 33%, and increasing productivity by 20%. Therefore, this approach stands as a significant opportunity to upgrade the operation of hammermills.

Keywords
Hammermill, Knives wearing, Cereals milling, Energy efficiency
References

Adetifa and Okewole, 2015

B.O. Adetifa, O.T. Okewole

Characterisation of small scale feed mills in a developing country

Adom et al., 2015

F. Adom, C. Workman, G. Thoma, D. Shonnard

Carbon footprint analysis of dairy feed from a mill in Michigan, USA

Amazon, 2020

PT100 temperature sensor [WWW Document]

Anders, 2006

L. Anders

Austempered High Silicon Steel
Lulea University of Technology (2006)

Anderson, 2010

S. Anderson

Optimizing hammermill efficiency

Armatmontree et al., 2019

A. Armatmontree, W. San-Um, C. Keatmanee

Austin, 2004

L.G. Austin

A preliminary simulation model for fine grinding in high speed hammer mills

Baker, 1960

R.J. Baker

Factors that Affect the Granulation and Capacity
Kansas State University of Agriculture and Applied Science (1960)

Behnamfard et al., 2020

A. Behnamfard, D. Namaei Roudi, F. Veglio

The performance improvement of a full-scale autogenous mill by setting the feed ore properties

Bitra et al., 2009

V. Bitra, A. Womac, C. Igathinathane, P. Miu, Y. Ynag

Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover
Bioresour. Technol., 100 (2009), pp. 6578-6585

Bitra et al., 2010

V.S.P. Bitra, A.R. Womac, C. Igathinathane, S. Sokhansanj

Knife mill comminution energy analysis of switchgrass, wheat straw, corn stover and characterization particle size distributions

Buffalo, 2016

Schutte Buffalo

Routine maintenance for size reduction equipment
[WWW Document]. Schutte hammer mills. URL

CIDB, 2018

Cidb

Annual Report 2017-2018. Airpt
Carbon Accredit, 91 (2018), pp. 399-404

CREG, 2020

Creg

Tarifario Enero 2020
(2020)

Dabbour et al., 2014
M. Dabbour, A. Bahnasawy, S. Ali, Z. El- Haddad

Energy Consumption in Manufacturing of Different Types of Feeds, in: 2nd International Conference on Biotechnology Applications in Agriculture (ICBAA)
Benha University, Moshtohor and Hurghada, El Cairo (2014), pp. 15-24, 10.13140/RG.2.1.3056.0805

Dandotiya, 2011
R. Dandotiya

Decision support models for the maintenance and design of mill liners

Dávila et al., 2020
P. Dávila, J.D. Sánchez, H. Herrera, J.D. Turriago, J.C. Gaviria
Cálculo del factor de emisiones de la red de energía eléctrica en Colombia
Bogotá (2020)

Diop et al., 2020
M. Diop, O. Ba, B. Niang, I. Ngom, L. Thiaw

IEEE, Istanbul, Turkey (2020), pp. 12-13, 10.1109/ICECCE49384.2020.9179182

El-Shal et al., 2010
M.S. El-Shal, M.A. Tawfik, A.M. El-Shal, K.A. Metwally

Study the effect of some operational factors on hammer mill
Misr J. Agric. Eng., 27 (2010), pp. 54-74

FAMSUN, 2013
Famsun

FAMSUN SWFP66D series fine-grinding hammer mill concise operation manual [WWW Document]

Fenchea, 2013
M. Fenchea

Design of hammer mills for optimum performance

Ghafori et al., 2020
H. Ghafori, S.A. Khodarahmi, M. Razazi

Grain mill knife wear optimization

Guyomard et al., 2013
H. Guyomard, S. Manceron, J.-L. Peyraud
Trade in feed grains, animals, and animal products: current trends, future prospects, and main issues

Heimann, 2000
M. Heimann

Hamermill Maintenance
Roskamp Champion (2000)

Heimann, 2014
M. Heimann

Hamermill Maintenance for Top Grinding Performance at a Lower Operating Cost
CSC Publishing (2014)

Indian Feed Industry, 2015
Indian Feed Industry

Revitalizing Nutritional Security
Gurgaon, India (2015)

Ismail et al., 2017
N.K. Ismail, O.A. Fouda, M.C. Ahmad, M.M. Mosa, M. Ahmad, M.M. Mosa

Influence of knives wear phenomena on hammer mill productivity and product quality

Jardine and Tsang, 2013
A.K. Jardine, A.H. Tsang

Maintenance, Replacement, and Reliability: Theory and Applications

Jianqiang and Keow, 1997
M. Jianqiang, L.M. Keow

Economical optimization of tool replacement intervals

Koch, 2008
K.B. Koch
Singapore

Kudzanai, 2008
T. Kudzanai

Evaluation of Milling Performance of a 1½ Bell Grinding Bill Manufactured at Helides Engineering
University of Zimbabwe (2008)

Lamban, 1995
J.L. Lamban

Molienda en fábricas de piensos. Equipos empleados y aspectos técnicos
MUNDO Ganad (1995), pp. 63-69

Machado, 2012
A. Machado

Evaluación de producción más limpia en la empresa piensos Cienfuegos
Universidad de Cienfuegos (2012)

McEllhiney, 1994
R. McEllhiney

Feed Manufacturing Technology IV, First (1994)
(Arlington, VA., USA)

Naimi and Sokhansanj, 2018
L.J. Naimi, S. Sokhansanj

Data-based equation to predict power and energy input for grinding wheat

Nugroho et al., 2015

Karakterisasi blade hammer mill type swing

OECDFAO, 2018
Oecd, Fao

OECD - FAO Agricultural Outlook 2018 - 2027
(Chapter 3). Cereals

Ortiz, 2019
O.M. Ortiz

Maintenance cost influence in a comminution layout design
Procedia Manuf, 41 (2019), pp. 851-858

Oyedeji et al., 2020
O. Oyedeji, P. Gitman, J. Qu, E. Webb

Understanding the impact of lignocellulosic biomass variability on the size reduction process: a review

PelletMasters, 2020
PelletMasters

PelletMasters Hammer Mills - Electric, Gasoline, and Diesel
(2020)
([WWW Document])

Romero, 2016
J. Romero

Análisis del desgaste de los martillo del Buhler en alimentos
Polar Colombia S
A.S. UNIVERSIDAD SANTO TOMÁS (2016)

Roy et al., 2020
S. Roy, K. Lee, J.A. Lacey, V.S. Thompson, J.R. Keiser, J. Qu, J.R. Keiser, J. Qu

Material characterization-based wear mechanism investigation for biomass hammer mills
Sánchez et al., 2020

Efficiency in electromechanical drive motors and energy performance indicators for implementing a management system in balanced animal feed manufacturing

Sannik and Pappel, 2004
U. Sannik, T.K. Pappel

Scholten, 1985
R.L. Scholten

The Effects of Prebreaking on the Efficiency of Hammermill Particle Size Reduction Systems in Feed Manufacturing
Kansas State University (1985)

Silva et al., 2016
F. Silva, W. Freire, M. Pilatasig

Energy efficiency in the milling process of dehydrated products, using hammer mill, in: 2016 IEEE International Conference on Automatica (ICA-ACCA)
Talca, Chile (2016), pp. 1-8, 10.1109/ica-acca.2016.7778492

Silver, 1931
E. Silver

Feed Grinder Investigations
(1931)
(Ohio, United States)

Stark, 2012
C. Stark

Feed Manufacturing to Lower Feed Cost, in: Allen D. Leeman Swine Conference
Veterinary Continuing Education, Saint Paul, Minnesota (2012), pp. 127-133

Teeri et al., 2006
T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen, J. Liimatainen

Impact wear in mineral crushing

Testo-direct, 2020
Testo-direct

Testo 176-T2 2-channel temperature data logger with 2 external RTD
[WWW Document]. URL

Valmetal, 2013
Valmetal

Operator’s manual parts list
hammer mill model (2013), pp. 12-1215
(Valmetal)

Yancey et al., 2013
N. Yancey, C.T. Wright, T.L. Westover

Optimizing hammer mill performance through screen selection and hammer design

Zastempowski, 2015
M. Zastempowski

A comparative study of new and traditional designs of a hammer mill

Ziggers, 2001
B.D. Ziggers

Hammering or rolling the grain
Feed Technol, 5 (2001), pp. 9-17