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Abstract. We establish sufficient conditions for the existence and unique-
ness of (N, λ)-periodic solutions for the following abstract model:

Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z,

where 0 < α ≤ 1, A is a closed linear operator defined in a Banach space
X, Δα denotes the fractional difference operator in the Weyl-like sense,
and f satisfies appropriate conditions.
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1. Introduction

In this article, we investigate the existence of a class of solutions for the
abstract fractional difference equation

Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z, (1.1)

called (N,λ)-periodic solutions. In (1.1), A is a possibly unbounded operator
defined on a Banach space X and f : Z × X → X is given. This class of
(N,λ)-periodic functions was introduced in the reference [6] as the discrete
counterpart of the notion of (ω, c)-periodic functions [10], a notion that has
been studied by various authors, see, e.g., [8,9,15–19,26] and [30]. It is worth
noting that class of (N,λ)-periodic functions contains the classes of discrete
periodic (λ = 1), discrete anti-periodic (λ = −1), discrete Bloch-periodic
(λ = eikN , k ∈ Z fixed), and unbounded functions.

Existence and uniqueness of (N,λ)-periodic solutions for scalar models,
such as Volterra difference equations with infinite delay, were recently in-
vestigated in [6]. Anticipating a growing theoretical and practical interest in
this class of solutions, we study in this article the existence and uniqueness
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of solutions for the abstract Cauchy problem (1.1). This problem extends
the class of models under study so far, to the broader context of partial
difference-differential equations, that is vector-valued models, since A could
be an unbounded operator defined in a Banach space X, e.g., the Laplacian
operator on L2(Rd). In fact, as we will reveal in this investigation, when A is
the generator of a C0-semigroup that is strictly contractive, plus other condi-
tions on the non-linear term, then the existence of (N,λ)-periodic solutions
for (1.1) can be guaranteed.

Discrete fractional calculus has received considerable interest in recent
years due to its interaction with applied mathematics and computation. We
refer to the articles [14] for applications to interval-valued systems, [4] for ap-
plications to chaotic systems with short memory and image encryption, [13]
for applications to variable-order fractional discrete-time recurrent neural
networks, [31] for applications to image enhancement, and [32] for applica-
tions to Lyapunov functions for Riemann-Liouville-like fractional difference
equations.

The existence of solutions for the abstract model (1.1) began to be
studied in the articles [21] and [12] in its linearized form. Subsequently, max-
imal regularity in Lebesgue spaces of sequences was studied in [22]. In case
A is bounded, weighted bounded solutions were studied in [24]. In [2], the
existence of almost automorphic mild solutions was studied.

However, the existence and uniqueness of (N,λ)-periodic solutions is an
open topic that deserves to be investigated. The objective of this work is to
solve this problem.

As methods, we use the technique of resolvent sequences of operators,
a tool that was introduced in 2017 by Lizama [21] and has been used in
several articles since then. Using this method, an explicit representation of
the solution for (1.1) can be obtained, which allows the use of several fixed
point theorems.

Recently, it has been shown that resolvent sequences of operators can
be related to each other by means of a subordination principle [7], at least
when 0 < α ≤ 1. In this work, we will refine the results in [7] observing that
the only necessary condition to obtain the existence of resolvent sequences
of operators is: 1 ∈ ρ(A), the resolvent set of A. This crucial observation is
stated in Theorem 3.1 below, and follows from the subordination principle
which we will generalize here using an extension of the discrete version of the
Lévy α-stable distribution.

Therefore, our main result regarding the solubility of (1.1) can be proved
and it says the following: suppose that 1 ∈ ρ(A) and

rA:=‖(I − A)−1‖ < 1. (1.2)

Assume that there exist (N,λ) ∈ N× (C\D) and a constant L > 0, such that
f(n + N,λx) = λf(n, x) for all (n, x) ∈ Z × X and

‖f(n, x) − f(n, y)‖ ≤ L‖x − y‖,
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for all x, y ∈ X and all n ∈ Z. If

L <

(
1 − 1

|λ|1/N

)α

+
(

1
rA

− 1
)

, (1.3)

then Eq. (1.1) has a unique (N,λ)-periodic solution in a mild sense.
This article is organized as follows: Section 2 is devoted to the prelim-

inaries about the notion of fractional order difference operator Δα that we
will use. We will also remember the notion of Mittag–Leffler sequence and of
(μ, ν)-resolvent sequence of operators. We end this section by remembering
the definition of (N,λ)-periodic sequence. Section 3 introduces the notion of
a scaled Wright sequence and lists some of its main properties. Also in this
section, we establish the important Theorem 3.1, showing that the condition
1 ∈ ρ(A) is sufficient for the existence of (μ, ν)-resolvent sequence of opera-
tors. Then, we prove the Theorem 3.4 which says that under the condition
(1.2), the summability of (ν, ν)-resolvent sequences can be ensured. Using this
relevant fact, we solve in Section 4 the problem of existence and uniqueness of
(N,λ)-periodic solutions for the equation (1.1). See Theorem 4.5. Finally, an
example is given where A is the one-dimensional Laplacian in X = L2(0, 1).

2. Preliminaries

Let X be a complex Banach space with norm ‖ · ‖ and B(X) denotes the
Banach space of all bounded operators defined on X. For a real number a,
we denote Na:={a, a + 1, a + 2, . . .}, and when a = 1, we write N . We recall
that the finite discrete convolution ∗ of two sequences f, g : N0 → X is defined
by

(f ∗ g)(n):=
n∑

j=0

f(n − j)g(j), n ∈ N0.

We denote by s(Z,X) the vector space consisting of all vector-valued se-
quences f : Z → X. For f ∈ s(Z,X), we recall that the forward difference
operator Δ : s(Z,X) → s(Z,X) is defined by

Δf(n):=f(n + 1) − f(n), n ∈ Z.

On the other hand, for an arbitrary α ∈ C\{0,−1,−2, ...} the Cesàro sequence
{kα(n)}n∈N0 , introduced in [21] (see also [33]), is defined by

kα(n):=
Γ(α + n)
Γ(α)n!

, n ∈ N0. (2.1)

In case α = 0, we define k0(n):=δ0(n), the Kronecker delta.
The following equality and estimate holds: for α > 0

kα(n) =
1

n1−αΓ(α)

(
1 + O

(
1
n

))

and for 0 < α < 1,

1
Γ(α)(n + 1)1−α

< kα(n) <
1

Γ(α)n1−α
, n ∈ N. (2.2)
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Furthermore, given α, β > 0, the sequence kα satisfies the semigroup property
in N0, that is

(kα ∗ kβ)(n) = kα+β(n), ∀n ∈ N0; (2.3)

see [3, Sect. 2]. Given α > 0, we define the set

	1α(Z,X):=
{

f ∈ s(Z,X) :
∞∑

n=−∞
‖nα−1f(n)‖ < ∞

}
.

It is clear that 	1α(Z,X) is a Banach space under the norm ‖f‖�1α
:=

∞∑
n=−∞

‖nα−1f(n)‖.

If α = 1, then we simply write 	1(Z,X). Now, suppose that 0 < α ≤ 1.
Observe that, if f ∈ 	1(Z,X), then

‖f‖�1α
:=

∞∑
n=−∞

‖nα−1f(n)‖ <

∞∑
n=−∞

‖f(n)‖ < ∞.

Hence, 	1(Z,X) ⊂ 	1α(Z,X) for 0 < α ≤ 1.
The theory and applications of operators defined by means of the Cesàro

sequences defined on N0 have been worked in different investigations (see, for
example, [3,7,11,20,21,27]). In this paper, we will work with the following
fractional sum operator defined on Z in the reference [2].

Definition 2.1. [2] Given 0 < α < 1 the α-th fractional sum operator Δ−α :
	1(Z,X) → s(Z,X) is defined by means of the formula

Δ−αf(n):=
n∑

j=−∞
kα(n − j)f(j), f ∈ 	1(Z,X). (2.4)

Remark 2.2. Note that, for α = 0, Δ−αf(n) = f(n).

The next definition about fractional differences operators in the sense
of Riemman–Liouville and Caputo was introduced by Abadias and Lizama
in [2].

Definition 2.3. Let 0 < α < 1 and f ∈ 	1(Z,X). The Caputo fractional
difference operator of order α is defined by

cΔαf(n):=Δ−(1−α)Δf(n),

and the Riemann–Liouville fractional difference operator of order α is defined
by

RΔαf(n):=ΔΔ−(1−α)f(n). (2.5)

Given f ∈ 	1α(Z,X), it was proved in [2] that

RΔαf(n) = cΔαf(n), n ∈ Z.

Therefore, from now on, we will simply denote by Δα either RΔα or cΔα.
Now, we recall the notion of Mittag–Leffler sequence defined and studied

in the references [7,21,23,27].
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Let α, β > 0 and σ ∈ C be such that |σ| < 1. We define

Eα,β(σ, n):=
∞∑

j=0

σjkαj+β(n), n ∈ N0. (2.6)

Note that the series on the right-hand side of (2.6) converges by (2.2).
Furthermore, the Z-transform of the Mittag–Leffler sequence exists for |z| > 1
(see [7]), and is given by

∞∑
j=0

Eα,β(σ, j)z−j =
(

z

z − 1

)β (
1 − σ

(
z

z − 1

)α)−1

. (2.7)

Motivated by [7, (the proof of) Proposition 4.6], we get the following
result regarding the asymptotic behavior of the Mittag–Leffler sequence.

Theorem 2.4. Let 0 < α < 2, β,C > 0 and σ ∈ C be such that |σ| < 1. The
Mittag–Leffler sequence (2.6) satisfies the following inequality:

|Eα,β(−σ, n)| ≤ C

1 + σnα
, n ∈ N0.

Proof. By (2.6), the inequality (2.2), and [28, Theorem 1.6], the result follows.
�

Next, we recall the concept of discrete (α, �)-resolvent sequence defined
in [7, Sect. 4, Definition 4.4]. Also, useful results related with this definition
are given.

Definition 2.5. Let �, α > 0 be given and A be a closed linear operator with
domain D(A) defined on a Banach space X. An operator-valued sequence
{Sα,�(n)}n∈N0 ⊂ B(X) is called a discrete (α, �)-resolvent sequence generated
by A if it satisfies the following conditions:

(i) Sα,�(n)x ∈ D(A) for all x ∈ X and Sα,�(n)Ax = ASα,�(n)x for each
n ∈ N0 and x ∈ D(A);

(ii) Sα,�(n)x = k�(n)x + A(kα ∗ Sα,�)(n)x for all n ∈ N0 and each x ∈ X.

We finish this section recalling the notion of (N,λ)-periodic sequences
and their main properties. The notion of (N,λ)-periodic sequences was in-
troduced in [6] as a discrete counterpart of the concept of (ω, c)-periodic
functions defined in [10].

Definition 2.6 [6]. A vector-valued function f : Z → X is called (N,λ)-
periodic discrete function (or (N,λ)-periodic sequence) if there exist N ∈ N

and λ ∈ C\ {0}, such that f(n + N) = λf(n) for all n ∈ Z. N is called the
λ-period of f . The collection of those sequences with the same λ-period N
will be denoted by PNλ(Z,X).

The following result is central for the theory.

Proposition 2.7 [6]. A function f is (N,λ)-periodic discrete function if and
only if there exists u ∈ PN (Z,X), such that

f(n) = λ∧(n)u(n), for all n ∈ Z, (2.8)

where λ∧(n):=λn/N .
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The vector-valued space of sequences PNλ(Z,X) is a Banach space with
the norm

‖f‖Nλ:= max
n∈[0,N ]

‖λ∧(−n)f(n)‖. (2.9)

3. The Discrete Scaled Wright Function and Summability of
Resolvent Sequences

In [7], the authors introduced a discrete version of the Lévy α-stable distri-
bution which can be defined as

lα(n, j) =
j∑

i=0

(
j

i

)
(−1)ik−αi(n), 0 < α < 1, n, j ∈ N0. (3.1)

The sequence lα is a probability density function in n, which means that

0 ≤ lα(n, j) and
∞∑

n=0

lα(n, j) = 1. (3.2)

This representation of the discrete Lévy function allowed to establish
a subordination principle which relates a discrete (α, �)-resolvent sequence
with a C-semigroup generated by a given closed linear operator A defined on
a Banach space X (see [7]). The following result is a consequence of this fact.

Theorem 3.1. Let 0 < α ≤ � ≤ 1 be given. Let A be a closed and linear
operator defined on a Banach space X, such that 1 ∈ ρ(A). Then, the family

Sα,�(n)x =
∞∑

j=0

(k�−α ∗ lα(·, j))(n)(I − A)−(j+1)x, n ∈ N0, x ∈ X (3.3)

is a discrete (α, �)-resolvent sequence generated by A.

Proof. By hypothesis, C:=(I − A)−1 exists and the operator {T (n)}n∈N0

given by T (n) = (I − A)−(n+1) is bounded on X. On the other hand

T (n) = (I − A)−(n+1) = C−(n−1)T (1)n.

Hence, the operator {T (n)}n∈N0 is a the discrete C-semigroup (see [7]). Thus,
the result follows from Theorem 4.5 of [7]. �

The concept of scaled Wright function in the continuous case was in-
troduced by Abadias and Miana in [1]. Motivated by the above theorem, we
propose in this paper the following definition.

Definition 3.2. Let 0 < α < 1 and 0 ≤ β be given. For n ∈ N0, the discrete
scaled Wright function ϕα,β is defined by

ϕα,β(n, j):=
j∑

i=0

(
j

i

)
(−1)ikβ−αi(n). (3.4)
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Some properties of the discrete scaled Wright function can be deduced
from those properties of the Lévy α-stable distribution. They are stated in
the following remark.

Remark 3.3. (i) Note that, by (2.3) and (3.1)

ϕα,β(n, j) = (kβ ∗ lα(·, j))(n)

and, in particular, ϕα,0(n, j) = lα(n, j).
(ii) Since the sequence lα is non-negative, then the discrete scaled Wright

function ϕα,β is non-negative.
(iii) The formula (3.3) can be written as

Sα,�(n):=
∞∑

j=0

ϕα,�−α(n, j)T (j). (3.5)

(iv) By Proposition 4.6 of [7], we have
∞∑

j=0

ϕα,β(n, j) (1 + λ)−(j+1) = Eα,α+β(−λ, n), n ∈ N, |λ| < 1.

(v) Let A = ω ∈ C and |w| < 1 . In this case, the discrete C-semigroup
generated by A is given by T (n) = (1 − ω)−(n+1). Then, by Theorem
3.1, A generates discrete (α, α)-resolvent and (α, 1)-resolvent sequences
given by

Sα,α(n) =
∑∞

j=0 ϕα,0(n, j)T (j) = Eα,α(ω, n), n ∈ N0, (3.6)

and

Sα,1(n) =
∑∞

j=0 ϕα,1−α(n, j)T (j) = Eα,1(ω, n), n ∈ N0, (3.7)

where we have used (iii) and (iv).

We recall that an operator-valued sequence {S(n)}n∈N0 ∈ B(X) is said
to be summable if

‖ S ‖1 :=
∞∑

n=0

‖S(n)‖ < ∞.

We finish this section with a useful result which is a direct consequence of
the above considerations.

Theorem 3.4. Let A be a closed linear operator and suppose that 1 ∈ ρ(A)
and

‖(I − A)−1‖ < 1. (3.8)

Then, A generates a summable discrete (α, α)-resolvent sequence
{Sα,α(n)}n∈N0 .

Proof. Since 1 ∈ ρ(A), then by Theorem 3.1, the family

Sα,α(n)x =
∞∑

j=0

ϕα,0(n, j)(I − A)−(j+1)x, n ∈ N0, x ∈ X
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is a discrete (α, α)-resolvent sequence generated by A. We will prove that it
is summable. Indeed, since 0 ≤ ϕα,0(n, j) ≤ 1 for j ∈ N0, then

∞∑
n=0

‖Sα,α(n)‖ ≤
∞∑

n=0

∞∑
j=0

ϕα,0(n, j)‖(I − A)−(j+1)‖ ≤
∞∑

j=0

‖(I − A)−(j+1)‖

≤ ‖(I − A)−1‖
∞∑

j=0

‖(I − A)−1‖j < ∞.

�

The following example provide concrete conditions on A under which
the condition (3.8) holds.

Example. Let A be the generator of a C0-semigroup strictly contractive. For
instance, on X:=L1(R), we define

(T (t)f)(s) =

⎧⎨
⎩

βf(t + s) if s ∈ [−t, 0],

f(t + s) otherwise,

where 0 < β < 1 is arbitrary. Then, T (t) is a C0-semigroup and ‖T (t)‖ =
β < 1 (since ‖T (t)1[0,t]‖ = β‖1[0,t]‖ ).

We deduce that 1 ∈ ρ(A) and ‖(I − A)−1‖ < 1. Indeed,

‖(I − A)−1‖ = ‖
∫ ∞

0

e−tT (t)dt‖ ≤
∫ ∞

0

e−t‖T (t)‖dt < β < 1.

The last part of the earlier example shows the following result.

Corollary 3.5. Let A be the generator of a C0-semigroup strictly contractive,
then 1 ∈ ρ(A) and ‖(I − A)−1‖ < 1.

4. (N, λ)-Periodic Solutions for Fractional Difference
Equations on Z

In this section, we study regularity of solutions to the linear fractional differ-
ence equation

Δαu(n) = Au(n + 1) + g(n), n ∈ Z,

and the non-linear fractional equation

Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z.

in PNλ(Z,X), where A be a closed linear operator with domain D(A) defined
on X.
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4.1. The linear case

Let 0 < α ≤ 1 and A be a closed linear operator with domain D(A) defined
on a Banach space X. We consider the linear fractional difference equation

Δαu(n) = Au(n + 1) + g(n), n ∈ Z. (4.1)

We recall from [2, Definition 4.1] that a sequence u ∈ 	1(Z,X) is called a
strong solution for Eq. (4.1) if u(n) ∈ D(A) for all n ∈ Z and u satisfies (4.1).

Definition 4.1 [2]. Let A be the generator of a discrete (α, α)-resolvent family
{Sα,α(n)}n∈N0 and g : Z −→ X. The sequence

u(n) =
n−1∑

j=−∞
Sα,α(n − 1 − j)g(j), n ∈ Z (4.2)

is called a mild solution for Eq. (4.1) if m → Sα,α(m)g(n − m) is summable
on N0 for each n ∈ Z.

Note that if g ∈ 	1(Z,D(A)), then each mild solution is a strong one;
see [2, Theorem 4.2].

In the following theorem, we establish the existence of (N,λ)-periodic
mild solutions for Eq. (4.1).

Theorem 4.2. Let 0 < α ≤ 1. Assume that A be a closed linear operator
defined on a Banach space X, 1 ∈ ρ(A) and

‖(I − A)−1‖ < 1.

If g ∈ PNλ(Z,X), then there is an (N,λ)-periodic mild solution of (4.1) given
by the sequence

u(n):=
n−1∑

j=−∞
Sα,α(n − 1 − j)g(j), n ∈ Z, (4.3)

where {Sα,α(n)}n∈N0 is discrete (α, α)-resolvent sequence defined in (3.3).

Proof. By Theorem 3.4, A generates a summable discrete (α, α)-resolvent
sequence {Sα,α(n)}n∈N given by

Sα,α(n)x =
∞∑

j=0

ϕα,0(n, j)(I − A)−(j+1)x, n ∈ N0, x ∈ X.

Since g is bounded and {Sα,α(n)}n∈N0 is summable, it follows that the se-
quence u is a mild solution of (4.1).

It remains to prove that u ∈ PNλ(Z,X). Indeed,

u(n + N) =
n+N−1∑
j=−∞

Sα,α(n+N−1 − j)g(j) =
n−1∑

p=−∞
Sα,α(n − 1 − p)g(p + N)

= λ

n−1∑
p=−∞

Sα,α(n − 1 − p)g(p) = λu(n),

getting that u ∈ PNλ(Z,X).
�
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4.2. The Semilinear Case

In this subsection, we consider the following fractional difference equation:

Δαu(n) = Au(n + 1) + f(n, u(n)), n ∈ Z, (4.4)

where 0 < α ≤ 1, A satisfies the hypotheses in Theorem 3.4 and f satisfies
suitable conditions.

Inspired in the solution of the linear case, we give the following definition
of mild solution for the semilinear case.

Definition 4.3. Let A be the generator of a discrete (α, α)-resolvent family
{Sα,α(n)}n∈N0 and f : Z × X −→ X. We say that a sequence u : Z −→ X is
a (N,λ)-periodic mild solution of (4.4) if u ∈ PNλ(Z,X) satisfies

u(n) =
n−1∑

j=−∞
Sα,α(n − 1 − j)f(j, u(j)), n ∈ Z, (4.5)

where m → Sα,α(m)f(n − m,x) is summable on N0 for each n ∈ Z.

Let f : Z × X → X , φ ∈ PNλ(Z,X) and denote by N (φ)(·):=f(·, φ(·))
the Nemytskii discrete composition operator.

To prove the main theorem, we will need to recall the following.

Theorem 4.4 [6]. Let f : Z × X → X. Then, the following assertions are
equivalent:

(i) For every φ ∈ PNλ(Z,X), we have that N (φ) is (N,λ)-periodic discrete.
(ii) f is N -periodic in the first variable and homogeneous in the second

variable, that is f(n + N,λx) = λf(n, x) for all (n, x) ∈ Z × X.

Let D:={λ ∈ C : |λ| < 1}. The following is our main result.

Theorem 4.5. Let f : Z × X → X be given and let A be a closed linear
operator defined on a Banach space X, such that 1 ∈ ρ(A) and

rA:=‖(I − A)−1‖ < 1. (4.6)

Assume the following conditions:

H1. There exists (N,λ) ∈ N× (C\D), such that f(n + N,λx) = λf(n, x) for
all (n, x) ∈ Z × X.

H2. There exists a constant L > 0, such that

‖f(n, x) − f(n, y)‖ ≤ L‖x − y‖,

for all x, y ∈ X and all n ∈ Z.
H3. The constant L in H2 is such that

L <

(
1 − 1

|λ|1/N

)α

+
(

1
rA

− 1
)

.

Then, Eq. (4.4) has a unique (N,λ)-periodic mild solution.
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Proof. First, let us define the operator G : PNλ(Z,X) → PNλ(Z,X) by

G(u)(n):=
n−1∑

j=−∞
Sα,α(n − 1 − j)f(j, u(j)).

Let u ∈ PNλ(Z,X) and g(n):=f(n, u(n)). By H1 and Theorem 4.4 we get that
g ∈ PN,λ(Z,X). As in the linear case, we can see that G(u) ∈ PNλ(Z,X). It
follows that G is well defined. Now, for u, v ∈ PNλ(Z,X)

‖G(u) − G(v)‖Nλ

= max
n∈[0,N ]

‖λ∧(−n − 1)
n−1∑

j=−∞
Sα,α(n − 1 − j) [f(j, u(j)) − f(j, v(j))] ‖,

where we have by H2 that

‖λ∧(−n − 1)
n−1∑

j=−∞
Sα,α(n − 1 − j) [f(j, u(j)) − f(j, v(j))] ‖

= ‖
n−1∑

j=−∞
λ∧(−(n − 1 − j))Sα,α(n − 1 − j)λ∧(−j) [f(j, u(j)) − f(j, v(j))] ‖

<

n−1∑
j=−∞

|λ|∧(−(n− 1 − j))|Sα,α(n− 1− j)||λ|∧(−j)‖ [f(j, u(j)) − f(j, v(j))] ‖

< L

n−1∑
j=−∞

|λ|∧(−(n − 1 − j))|Sα,α(n − 1 − j)|‖λ∧(−j) [u(j) − v(j)] ‖

< ‖u − v‖NλL

∞∑
k=0

‖S�
α,α(k)‖,

where S�
α,α(n) = λ∧(−n)Sα,α(n). Then

‖G(u) − G(v)‖Nλ

= max
n∈[0,N ]

‖λ∧(−n)
n∑

j=−∞
Sα,α(n − 1 − j) [f(j, u(j)) − f(j, v(j))] ‖

≤ L‖u − v‖Nλ‖S�
α,α‖1 < ‖u − v‖Nλ,

where by Theorem 3.1, Remark 3.3 (iv), and (2.7), we have

‖S∼
α,α‖1 ≤

∞∑
n=0

|λ|−n/N
∞∑

j=0

ϕα,0(n, j)rj+1
A =

∞∑
n=0

|λ|−n/NEα,α

(
1 − 1

rA
, n

)

=
|λ|α/N

(|λ|1/N − 1)α − (1 − 1
rA

)|λ|α/N
=

1(
1 − 1

|λ|1/N

)α

+
(

1
rA

− 1
) .

Therefore, the conclusion follows from H3. For the above, it follows that there
exists a unique function u ∈ PNλ(Z,X), such that Gu = u. Hence, u is the
unique (N,λ)-periodic mild solution of equation (4.4). �
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Remark 4.6. Regarding condition H3, we observe that it is enough to have
the weaker condition L‖S�

α,α‖1 < 1 where S∼
α,α(n):=λ∧(−n)Sα,α(n) and

{Sα,α(n)}n∈N0 is the (α, α)-resolvent sequence generated by A.

We finally finish with an application of the main result presented in this
paper.

Example. Let 0 < α < 1 and |λ| ≥ 1. We consider the following fractional
difference-differential equation in X = L2(0, 1):⎧⎨
⎩

Δαu(n, x) = ∂2

∂x2 u(n + 1, x) + g(n, x) cos(h(n, x)u(n, x)), n ∈ Z, x ∈ (0, 1),

u(n, 0) = u(n, 1) = 0,

(4.7)

where g ∈ PNλ(Z, L2(0, 1)), h ∈ PN 1
λ
(Z, L2(0, 1)) and

max
n∈[0,N ]

‖g(n)h(n)‖L2 <
(
1 − |λ|−1/N

)α

+

⎛
⎝

( ∞∑
m=1

1
(1 + (mπ)2)2

)−1/2

−1

⎞
⎠ .

(4.8)

We define

D(A) = {f ∈ L2(0, 1) : f ′′ ∈ L2(0, 1), f(0) = f(1) = 0},

Af = f ′′, ∀f ∈ D(A).

Then, (4.7) can be written in the abstract setting (4.4). It is well known that
A is the generator of an analytic semigroup {T (t)}t≥0 on L2(0, 1) (see [25])
which is given by

T (t)f =
∞∑

j=0

e−j2π2t〈f, ej〉ej ,

where {ej} is the standard basis in L2(0, 1). Moreover, we can represent the
generator A as

Af = −
∞∑

m=1

(mπ)2〈f, em〉em, f ∈ D(A).

Then, for each f ∈ L2(0, 1), we have 1 ∈ ρ(A) and

‖(I − A)−1f‖2L2 =
∞∑

m=1

1
(1 + (mπ)2)2

|〈f, em〉|2.

Note that

rA:= sup
‖f‖L2=1

‖(I − A)−1f‖L2 =

( ∞∑
m=1

1
(1 + (mπ)2)2

)1/2

≤
(

1
π4

∞∑
m=1

1
m4

)1/2

=
1√
90

< 1,
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where we have used the formula [29, P. 651] in the last equality. Then, the
condition (4.6) is satisfied. Now, we shall verify all the hypotheses in Theorem
4.5. Indeed, the sequence f(n, ξ):=g(n) cos(h(n)ξ), ξ ∈ L2(0, 1), satisfies

f(n + N,λξ) = g(n + N) cos(h(n + N)λξ) = λg(n) cos
(

1
λ

h(n)λξ

)

= λg(n) cos(h(n)ξ) = λf(n, ξ),

and

‖f(n, ξ) − f(n, ψ)‖L2 ≤ ‖g(n)h(n)‖L2‖ξ − ψ‖L2 ≤ L‖ξ − ψ‖L2 ,

where

L:= max
n∈[0,N ]

‖g(n)h(n)‖L2 .

From Eq. (4.8) and the fact that rA < 1, we obtain that

L <

(
1 − 1

|λ|1/N

)α

+
(

1
rA

− 1
)

,

satisfying H3. Thus, we have checked all the hypotheses of Theorem 4.5.
Hence, Eq. (4.7) has a unique (N,λ)-periodic mild solution.

Finally, observe that in case |λ| = 1, we have that

L:= max
n∈[0,N ]

‖g(n)h(n)‖L2 <
1
rA

− 1.

and therefore condition H3 independent of α. This happens precisely in the
standard cases of discrete periodic, discrete anti-periodic, and discrete Bloch-
periodic functions.
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