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• BTRs concentrations relate to the type of
cover, traffic intensity, and vehicle type.

• ƩBTRs in rainwater ranged from 4.5
to 26.4 while in meltwater from 1.6 to
47.2 μg/L.

• 5Cl-BTR was dominant both in rainwater
and in meltwater.

• 5Cl-BTR and 5Me-BTR present the highest
risk quotients levels among tested com-
pounds.

• BTRs concentrations in runoff are much
higher than drinking water proposed
limits.
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 This study aimed to identify and quantify benzotriazoles (BTRs) emissions from road traffic and paved areas in an
urban environment. Heterocyclic organic compounds BTRs are an emerging threat, under-recognized and under-
analyzed in most environmental and water legislation. They are hazardous, potentially mutagenic, and carcinogenic
micropollutants, not susceptible to effective biodegradation, and they move easily through the trophic chain, contam-
inating the environment and water resources. Traffic activities are a common source of BTR emissions in the urban en-
vironment, directly polluting human habitats through the different routes and numerous vehicles circulating in the
cities. Using twelve heterogeneous locations scattered over a metropolitan area in Poland as a case study, this research
analyzed the presence of BTRs in water samples from runoff produced from rainwater and snowmelt. 1H-BTR, 4Me-
BTR, 5Me-BTR and 5Cl-BTR were detected in the tested runoff water. 5Cl-BTR was present in all samples and in the
highest concentrations reaching 47,000 ng/L. Risk quotients calculated on the basis of the determined concentrations
indicate that the highest environmental risk is associated with the presence of 5Cl-BTR and the sum of 4Me-BTR and
5Me-BTR, and themost sensitive organisms are bacteria and invertebrates. The results indicate that it is possible to as-
sociate the occurrence of these contaminants with the type of cover, traffic intensity, and vehicle type.
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1. Introduction
1.1. Benzotriazoles (BTRs)

Benzotriazoles (BTRs) are classified as Contaminants of Emerging
Concern (CECs), meaning they might be candidates for future health regu-
lations (Trček et al., 2018). These heterocyclic organic compounds are pro-
duced and widely used as additives of commonly applied chemicals
worldwide in industry, aviation, transport, and households (Jia et al.,
2019; Xu et al., 2015). The toxicity of benzotriazole and its derivatives
has been deemed to induce cell cycle disruption, posing risks to human
health (Wang et al., 2017), and causing acute and chronic effects in aquatic
organisms (Minh et al., 2018). BTRs are proven mutagenic to bacterial cell
systems (Salmonella, Escherichia coli). Due to its genotoxicity and carcinoge-
nicity, BTR could act as a human carcinogen (Furumai et al., 2011; Xu et al.,
2015; Wang et al., 2017). BTR can coexist with carcinogenic heavy metals
such as Ni (II), Cr (VI), and As (III) (Minh et al., 2018; Xing et al., 2018).
BTRs show the ability to bioaccumulate, i.e., accumulate in the tissues of
living organisms, including humans (Furumai et al., 2011; Montesdeoca-
Esponda et al., 2019; Verlicchi et al., 2017). Benzotriazoles have already
been detected in human urine and adipose tissue (Jia et al., 2019; Liu
et al., 2017; Wang et al., 2015; Shi et al., 2019).

BTRs are high production volume chemicals (HPVC). Their annual pro-
duction exceeds 9000 t worldwide. These chemical compounds are widely
and frequently used. Micropollutants from the BTR group indicate various
chemical conditions in subsurface, leading to a different set of degradative
or transformative processes. The most important factors influencing the
degradation of BTRs, including biodegradability are the chemical charac-
terization of the surface (water, soil, sediment, dust, etc.) and its pollution
history, it's anthropogenic characteristics, contact time and the vector for
benzotriazole transport (Parajulee et al., 2017). According to the literature,
the identified pathways of BTR degradation are biodegradation, biotrans-
formation, bioaccumulation, bioadsorption, photochemical transforma-
tion, hydrolysis, hydroxylation, oxidation, chlorination, UV/chlorination,
UV-A photolysis, AOPs, membrane processes, polymerization and methyla-
tion (Weiss et al., 2006; Reemtsma et al., 2010; Liu et al., 2011; Domínguez
et al., 2012; Seeland et al., 2012; Asimakopoulos et al., 2013; Liu et al.,
2013; Fent et al., 2014; Alotaibi et al., 2015; Cantwell et al., 2015;
Mazioti et al., 2015; Molins-Delgado et al., 2015; Felis et al., 2016;
Miksch et al., 2016; Lu et al., 2018; Martín-Rilo et al., 2018; Gatidou
et al., 2019; Kowalska et al., 2019; Ahmad et al., 2020; Chen et al., 2020;
Piekutin et al., 2021). The authors report different times and efficiencies re-
lated to the degradation pathways (physical, chemical and biological) and
self-removal of BTR from the environment. Consequently, these BTR com-
pounds persist in the environment so long that they reach and pollute sur-
face waters and aquifers. For example an average half-life of BTR ranges
from one month to at least one year (Giger et al., 2006; Matamoros et al.,
2010; Durjava et al., 2013; Hu et al., 2018; Lee et al., 2019; Wagner et al.,
2020; Golovko et al., 2021). A significant effect on the biodegradation of
BTRs could have redox conditions changing from aerobic to anaerobic, in-
cluding nitrate-reducing, sulphate-reducing and methanogenic conditions
(Liu et al., 2013).

Several studies have been published on the occurrence of BTRs in tap
water; however, guidelines regarding BTRs in drinking water are scarce.
The Danish Environmental Protection Agency proposes a limit of 20,000
ng/L for BTRs in drinkingwater (Beltoft et al., 2013). Other authors suggest
that the maximum allowable concentration should follow that of the
Tolyltriazole, which for instance, in Australia is 7.0 ng/L (Janna et al.,
2011). Relatively low concentrations of benzotriazoles ranging from
10 ng/L to 200 ng/L were found in drinking water samples collected
from the Netherlands (van Leerdam et al., 2009). 1H-BTR and the sum of
4Me-BTR + 5Me-BTR were detected at concentrations ranging from 0.6
to 79.4 ng/L in tap water samples collected in the UK (Janna et al.,
2011). Higher levels of 1H-BTR residues and the sum of 4Me-BTR +
5Me-BTRwere reported in tap water samples collected from 51major cities
in China (Wang et al., 2016). A study that included 51major cities in China
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found that the type of water source and the degree of industrial develop-
ment were the main factors affecting the level of residual benzotriazoles
in tap water (Wang et al., 2016). Its findings indicate that the mean total
BTR concentration varied depending on the location: southern China
(36.2 ng/L), northern China (7.2 ng/L), western China (10.9 ng/L), and
eastern and central China (16.5 ng/L). The authors also found that chlorine
disinfection is a contributing factor to the presence of BTRs, and that boiling
water for up to 10 min is ineffective in removing these compounds.

As in most countries, precipitation is Poland's primary source of water
resources. This water cycle component introduces micropollutants into
the trophic chain and spreads micropollutants in the environment. For
further context, 70% of Poland's drinking water is from groundwater and
30% from surfacewaters. The requiredwater quality tests for potabilization
in Poland follow the most common physicochemical and microbiological
parameters employed worldwide, based on the World Health Organization
Guidelines (World Health Organization, 2017) and EU Directive (Directive
(EU), 2020). Similarly, there is EU Directive for the quality of treated
wastewater (Council Directive, 1991) but there is no limit value for
micropollutants. It is noteworthy that Switzerland was a pioneer in
adopting legislation requiring the monitoring of specific micropollutants
(including BTR) in treated wastewater, but only in selected, most modern
wastewater treatment plants (Eawag, 2019).

Many micropollutants, including the BTR group, are not analyzed in
drinking water sources. Similarly, tests to determine the presence of BTRs
in effluents from municipal and industrial wastewater treatment plants to
surfacewaters are not a requirement. This lack of knowledge about the con-
centration and accumulation of BTR in water resources might threaten
human populations and ecosystems.

1.2. Classification of BTR

The primary representative of compounds from the benzotriazole group
is benzotriazole. Benzotriazole is a bicyclic nitrogen heterocycle formed by
the fusion of the benzene ring with the 4,5-positions or the “d” site of 1H-
1,2,3-triazole. In the literature, benzotriazole and its derivatives are desig-
nated by many (up to fourteen) different abbreviations. This multiplicity
makes difficult the analysis of issues related to this topic and oftenmisleads
the reader. Supplementary material (Table I) provides the abbreviations
used by various authors for defining the same compound, as well as the
chemical structure of the studied compounds and their applications.

1.3. Primary sources of BTR pollution

Road transport is recognized as the largest emitter of micropollutants in
urban areas (Asheim et al., 2019). It is a large, widespread, and uncon-
trolled linear emitter. It is hazardous because it emits micropollutants di-
rectly into human-inhabited environments. Pollutants accumulate on
surfaces and around roads, and precipitation washes them away and puts
them into the water cycle. Urban rainfall runoff is one of the major sources
of micropollutants emitted from traffic to surface waters (Asheim et al.,
2019; Parajulee et al., 2017; Han et al., 2020).

BTRs increase the performance and durability of products. In the road
transport sector, BTRs are added as safeguards and enhancers which end
up released to the environment through various routes during the
operation, aging, or damage of vehicles and roads and their ancillary
elements. The following paragraphs present some instances in this regard.
Benzotriazoles are widely used as corrosion inhibitors and surface corro-
sion protection for metals, including copper and its alloys (Davis et al.,
1977). The most commonly used compounds are those with hydrogen in
the 1 position, as well as those with a methyl group: 1H-BTR, 4Me-BTR,
5Me-BTR, 5Cl-BTR (Allam et al., 2009; Antonijević et al., 2009; Luchkin
et al., 2020; Miksch et al., 2016; Pilsits et al., 1999; Simonović et al.,
2020). Road elements and vehicle components constructed, coated, or
containing copper are a source of micropollutantswhen subject to abrasion.
Benzotriazoles also serve as UV stabilizers and UV absorbers for making
fabrics and plastics resistant to this type of radiation (Li et al., 2019;
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Montesdeoca-Esponda et al., 2019; Xu et al., 2015). In road transport, any
abrasion and degradation of vehicle components containing such protec-
tion (e.g., tarpaulins or veneers) is a source of BTR.

BTR compounds are also widely used as de-icing, anti-freezing, and anti-
fogging agents in road transport and aviation. BTR derivatives are also used
in detergents and cleaning agents commonly employed in car washing
(Alotaibi et al., 2015; Janna et al., 2011). Once applied, rainfall washes
them from roads, car parks, pavements, or airports, allowing their introduc-
tion into the environment by their accumulation in the road lanes (Cantwell
et al., 2015; Fink, 2012; Książek et al., 2016; Wu et al., 1998).

Micropollutants from the benzotriazole group are found in the residue
of windshield wipers and tire treads (Bye and Johnsen, 2015). The attrition
caused by frequent braking and direction changes in the city roads intensify
tire wear and increase the emission of micropollutants. Even if the BTR
emission per vehicle is low, the cumulative effect is likely the highest source
of BTRs from roads in urban environments. These contaminants commonly
reach aquifers and water bodies through stormwater and combined sewers.

The authors indicate the spatial and seasonal variability of the actual
BTR concentrations in road runoffs, determined by the local anthropogenic
characteristics and climatic conditions. The road network density, traffic
volume, pattern of dry and wet periods, chemical de-icing events, snow re-
tention and melting, surface type and deposited historical pollutants are
considered to be significant vectors of BTR emission and transport vectors
for BTR (Awonaike et al., 2021, Han et al., 2020, Parajulee et al., 2017).
Poland is located in a Central European climate with a long winter with
sub-zero temperatures and snow events. BTR-containing chemicals and
de-icing salts are commonly used. According to the literature data, urban
traffic provides the sustainable base emission of BTR. There is a lack of
information about the load, rate and paths of transport of BTR
micropollutants from roads to the aquatic environment in Poland. Snow
winter is considered the period of the highest BTR emissions from roads
as roadside snow piles accumulate pollutants from both vehicles and road
de-icing. During snow melting, the accumulated BTR causes high or even
maximum annual pollution loads (Parajulee et al., 2017).

Identification of the sources and deposition of BTR in the urban environ-
ment will allow for the assessment of environmental risk andwill become the
basis for pollution models. An interesting example is the integrated statistical
and deterministic model for analyzing contaminants in high-density residen-
tial stormwater runoff. Themodel allows to simulate the presence, maximum
loads andmitigate loads of contaminants in runoff for implementation of best
practices in urban wastewater management (Brown et al., 2019).

1.4. Environmental risk of BTRs

Risk assessment provides technical support for decision-making in the
face of uncertainty. In practice, this assessment aims to determine the prob-
able impact of a chemical compound or mixture of chemical compounds
contaminating a specific environment (place, region) on the life processes
of organisms living there. The results of toxicological analyses on a labora-
tory scale are used for this purpose. Similarly, risk estimation evaluates the
threat to human life and health. Literature often distinguishes between en-
vironmental risk assessment or ecological risk, assuming that the former is
more concerned with the danger that environmental pollution poses to
humans and the latterwith the hazard that contamination poses to other or-
ganisms, their populations, and entire ecosystems (Suter, 2006).

Studies about the chronic effect of BTR and its derivatives on living or-
ganisms and ecosystems are scarce, and this is a relatively new research
topic. Additionally, this lack of complete knowledge regarding the BTRs
toxicological data, coupled with the widespread use and low toxicity indi-
ces of many of these compounds (considered in classical terms), might
lead to unknown chronic effects at the sublethal level and environmental
contamination (Janna et al., 2011; Beltoft et al., 2013).

The meaning of risk quotients (RQ) has a critical significance in inter-
preting toxicological and analytical data. For instance, in line with US reg-
ulations (US-EPA), the obtained RQ values are compared with Levels of
Concern (LOC) to consider the potential risk to non-target organisms and
3

subsequent management efforts. If the RQ exceeds the values 1.0 for
chronic test data, 0.5 for the acute test data, or even 0.05 in the case of en-
dangered species – such risk is unacceptable. According to the EU, all values
below the one are acceptable (Thomaidi et al., 2017).

1.5. The aim of the study

Based on the literature review, observations, and preliminary tests con-
ducted by the Authors, this study aims to identify, quantitatively, and qual-
itatively analyze and assess the environmental risk resulting from
benzotriazoles in runoff from roads and paved areas in an urban environ-
ment. For this research, two periods were selected based on an expected
high concentration of pollutants: rainfall after a long periodwithout precip-
itation (pollutants flushed from paved surfaces) and the beginning of snow-
melt after winter (pollutants accumulated in snow). This type of evaluation
has not yet been conducted to the best of our knowledge. This study is par-
ticularly relevant from the point of view of quality and protection of water
resources and human health.

2. Materials and methods

2.1. Materials

The research was carried out in the city of Białystok with 300,000 resi-
dents and an area of 102 km2, located in central Europe, in the north-
eastern part of Poland. The average annual precipitation in the city of
Białystok is 715 mm.

The research material was rainwater (1st cycle) and meltwater (2nd
cycle) sampled in 2020 and 2021 from 12 points (street inlets) situated
on the main communication routes of the city (Fig. 1).

Supplementary material (Table II) presents a short description of the
sample collection site, including the type of land development, the charac-
teristics of the catchment area, and the intensity of car traffic.

The first collection of samples was carried out on 12 December 2020,
after the first light snowfall with rain, and the second collection of samples
was carried out on 25 February 2021, at the beginning of the thaw. The
water sampling followed the applicable methodology (Baird et al., 2017).
These samples were collected in the winter season when the highest ex-
pected amount of pollutants (drivers use soft tires, salt is spread onto the
roads, traffic is less smooth due to poor road conditions, consumables
wear at a higher rate, December sees the largest numbers of cars parked
next to shopping centers, among other factors).

The sample collection at each measurement point consisted of the gath-
ering of ten consecutive samples gathered at regular 1-h intervals. Runoff
from rainwater and meltwater samples were collected into glass bottles
andfiltered. The samples intended for the quantitative and qualitative anal-
ysis of benzotriazoles were stored at −20 °C until testing.

There was practically no rainfall during the two weeks preceding the first
collection of samples, and the temperaturesfluctuated between−8.2 °C to 7.2
°C (Fig. 2). The snow fell on 10December, and on 12 December, it melted due
to rainfall, causing surface runoff. A significant period of accumulation of
micropollutants in the area of the road lane preceded the collectionof samples.

Rainfall was absent during the twoweeks preceding the second collection
of samples, and the temperatures were mostly below zero (as low as
−17.7 °C). There was a considerable snow cover with a 30–40 cm depth
over this period (Fig. 3). Starting on 20 February 2021, temperatures began
to reach positive values, causing the melting of the snow cover to be particu-
larly intense on 25 February, when the second series of samples was col-
lected.

2.2. Methods

2.2.1. Physico-chemical analyses
Analyses of micropollutants from the benzotriazole group were carried

out in the Laboratory of the Department of Environmental Chemistry of the
University of Białystok.



Fig. 1. Sample collection points in Białystok.
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2.2.1.1. Chemicals and materials. Standards of 1H-BTR (≥98%), 4Me-BTR
(4 methyl 1H benzotriazole isomer; ≥90%), BTR COOH (99%), 5Cl-BTR
(99%), 5 ABTR (Aldrich CPR grade), 2 S-BTH (97%), 2 OH BTH (98%), 2
ABTH (97%), 2 Me S BTH (97%), 2 M BTH (CPR), 1 OH BTR (≥97%)
and BTR2d4 (10 μg/mL in ace-tone) were purchased from Sigma-Aldrich
(Steinheim, Germany). Methanol (MeOH) and acetonitrile (I) of LC-MS
grade and dichloromethane (DCM) of analytical grade were obtained
from Merck (Darmstadt, Germany). Formic acid (98% v/v), hydrochloric
Fig. 2. Daily temperature, precipitation, and snow depth during the two weeks
preceding the collection of samples on 12 December 2020.

4

acid (HCl), and ammonium hydroxide were acquired from Sigma-Aldrich
(Steinheim, Germany). Concentrated nitric acid (UltraPure grade) was ob-
tained by distillation with Milestone SubPur (Sorisole, BG, Italy). Water
was purified with a Milli-Q grade water purification system (Q-option,
Elga Labwater, Veolia Water Systems LTD, U.K.).

2.2.1.2. Benzotriazoles. The study included the identification of four low
molecule benzotriazoles and two benzotriazole UV stabilizers in rainwater
Fig. 3. Daily temperature, precipitation, and snow depth during the two weeks
preceding the collection of samples on 25 February 2021.
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and snowmelt. The selection of these compounds was based on their carci-
nogenic or mutagenic properties to living organisms and because they can
move through the trophic chain. Table 1 presents the physicochemical
properties of these compounds.

The method employed for benzotriazoles' quantitative and qualitative
analysis based on microextraction by ultrasound-assisted emulsification
(USAEME) with in-situ acetylation and gas chromatography–mass spec-
trometry (GC–MS). This method was described in detail by the authors of
this paper in Kotowska et al. (2021).

2.2.1.3. The procedure of benzotriazole extraction and determination. This anal-
ysis was performed with an HP 6890 gas chromatograph with a mass spec-
trometric detector MSD5973 and HP 7673 autosampler (Agilent
Technologies, USA). Aliquots of 5-mL of the samples were placed in 10-
mL glass centrifuge test-tubes containing 0.1 g sodium hydrogen phosphate
for the simultaneous extraction and derivatization of 1H- benzotriazole
(1H-BTR), 4-methyl-1H-benzotriazole (4Me-BTR), 5-methyl-1H-benzotri-
azole (5Me-BTR), 5-chloro-benzotriazole (5Cl-BTR), 2-tert-Butyl-6-(5-
chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), and 2-(2H-
Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The ex-
traction solvent (chlorobenzene, 100 μL) and the derivatization reagent
(acetic anhydride, 120 μL) were added to such prepared samples and
mixed. Then, tubes were immersed in an ultrasonic bath (Polsonic, Sonic-
3, Poland). Extractions were performed at 42 kHz of ultrasound frequency
and 230 W of power for 5 min at room temperature. Emulsions were
disrupted by centrifugation at 6000 rpm for 6 min in an MPW-250Med. In-
struments (Poland) laboratory centrifuge. The organic phase settled at the
bottom of the conical tube and was removed using a 100 μL Hamilton sy-
ringe (USA) and transferred into a 150 μL insert of chromatographic vial.
1 μL of the extract was then analyzed using the HP6890 gas chromatograph
with a mass spectrometric detector MSD5973 and HP 7673 autosampler
(Agilent Technologies, USA). Determination of BTRs concentrations in rain-
water was carried out using the standard curve method. Calibration plots
were obtained by spiking the rainwater (taken from the area outside the
city and not containing BTRs) with six concentration levels in the range
50–50,000 ng/L and performing the extraction and GC–MS analysis. The
procedure was repeated four times for each concentration. The obtained
validation parameters are summarized in Supplementary materials
(Table III). Good linearity was registered for all studied compounds with
determination coefficients (r2) higher than 0.99. The limits of detection
(LoDs) were estimated as concentrations giving a signal-to-noise ratio of 3
and its values were between 5 and 15 ng/L. To determine the precision,
the value of the coefficient of variation (CV) calculated as a ratio of the
root mean squared error to the mean of the concentration was used. The
CV values ranging from 5.1 to 9.4 were obtained for analyzed BTRs. Recov-
eries were calculated comparing nominal concentration with the value de-
termined on the basis of calibration plot and they were between 102 and
118%.

2.2.2. Evaluation of the ecotoxicological risk
The ecotoxicological risk to the environment of benzotriazoles in water

runoff from traffic routes has been assessed using the risk quotient (RQ)
method and calculated based on the European Medicines Agency (EMA,
2006) guidelines for several water ecosystem trophic levels: producers -
algae or plants, consumers divided into invertebrates (Crustacea;
Branchiopoda) and vertebrates (Actinopterygii), and decomposers
Table 1
Characteristics of benzotriazoles selected for studies.

Compounds Molecular weight [Da] Solubility in water [g/L] Density

1H-BTR 119.12 19.80 1.3600
4Me-BTR 133.15 3.10 1.2700
5Me-BTR 133.15 3.10 1.1873
5Cl-BTR 153.57 Soluble in hot water 1.3647
UV-326 315.80 Insoluble 1.3200
UV-329 323.43 Insoluble 1.1000

5

(Bacteria). The RQx values were estimated using the ratio between the
highest environmental concentration (MEC) measured for each compound
under study and the short-term Predicted No-Effect Concentration (PNEC).

RQx ¼
MECx

PNECx
¼ MECx

ECx,y %½ �
AF

� �

where: MECx – the highest measured concentration of the individual
pollutant in the environmental sample; PNECx – predicted no-effect-
concentration [mg/L] of the pollutant x towards the given trophic level in
the environmental conditions; AF – the assessment factor selected in such
a way as to include the differences between laboratory data and natural
conditions, taking into account of interspecies and intraspecies differences;
ECx,y[%] – themeasure of toxicity (also IC for inhibition or LC for lethality) is
the calculated concentration [mg/L] of compound x in which given percent
of a laboratory population of model organism y (representing a given tro-
phic level) shows the observed effect, or the percentile of this effect that
is attained (e.g., usually 50 (median) for acute toxicity, or 10 for chronic ex-
position, if there is no data for acute toxicity). This research used literature
data to set these reference values.

The criteria for high, medium, and low risk are based on the Hazard
Quotient (HQ), which is the ratio between the MEC and the PNEC: HQ ≥
1 (high), 0.1 ≤ HQ < 1 (medium), and HQ < 0.1 (low risk) (Zhang et al.,
2018; Kotowska et al., 2020).

This study considers RQx < 0.1 as within an acceptable level of risk, 0.1
≤RQx< 1 asmedium risk, and RQx≥ 1 as an unacceptable level of ecolog-
ical risk for the aquatic ecosystem, based on the guidelines of ECB (2003)
and Perrodin et al. (2011) and following the ranking categories described
in Table 2 based on available literature.

PNEC was calculated by taking the acute time exposition (15 min for
bacteria to 96 h for some fishes) median lethal/inhibition/effect concentra-
tion EC/IC/LC50 or data based on chronic toxicity and EC10 and dividing it
by a safety factor (AF). The AF of this study follows the recommendations of
the European Parliament and the Council (2000a,b), usually 1000, and for
chronic 100. These values could be adapted for other regions depending on
local legislation.

In the case when more than one value of toxicity factor tested on a rep-
resentative trophic level was found for a given compound, its lowest con-
centration value (highest toxicity) was adopted. The selected values of
toxicity factors used in the calculations were defined based on available lit-
erature data (Table 2).

The experimental design for the laboratory analyses follows standard pro-
cedures, and the testing should be performed separately for each indicator
species. In addition, they shall be conducted under strictly controlled condi-
tions such that environmental factors do not influence the results. Conse-
quently, in a risk assessment, an assessment factor (AF) is applied to reflect
the actual safety level of a substance on an ecosystem organism by taking a
divisor value for a given toxicity indicator (e.g., EC50, EC10, or LOEC) and a
test model organism representing one of each trophic level. Based on these
two variables, the AF usually ranges from 10 to 1000. Knowing the potential
impact on indicator organisms expressed by the concentration of a com-
pound causing a measurable toxic effect under laboratory conditions, re-
duced by the AF factor, allows assessing the predicted environment
concentration (PEC) or evaluating the empirical data from environmental
samples (MEC). In this paper, the concentrations of selected BTRs were
[g/cm3] Melting point [°C] Boiling point [°C] Log KOW

97–99 204 1.44
139–143 360.6 ± 11.0 (predicted) 1.60
80–82 210–212 1.60
157–159 252.42 2.17
144–147 460.4 ± 55.0 (predicted) –
106–108 471.8 ± 55.0 (predicted) –



Table 2
Ecological risk for the aquatic ecosystem.

Compound Species Time of exposition Toxicity index Mean value [mg/L] Reference

4Me-BTR Ceriodaphnia dubia 48 h LC50 118 Pillard et al., 2001
Danio rerio 96 h LC50 59 Damalas et al., 2018
Aliivibrio fischeri 15 min EC50 21 Pillard et al., 2001
Pimephales promelas 96 h LC50 63 Pillard et al., 2001

5Cl-BTR Daphnia magna 48 h LC50 28.73 Giraudo et al., 2017
5Me-BTR Desmodesmus subspicatus 72 h EC10 2.86 Seeland et al., 2012

Lemna minor 7d EC10 2.11 Seeland et al., 2012
Daphnia galeata 48 h EC50 8.58 Seeland et al., 2012
Ceriodaphnia dubia 48 h LC50 79 Pillard et al., 2001
Aliivibrio fischeri 15 min EC50 8.7 Pillard et al., 2001
Pimephales promelas 96 h LC50 22 Pillard et al., 2001
Danio rerio 96 h LC50 128 Damalas et al., 2018
Aliivibrio fischeri 15 min EC50 5.91 Cancilla et al., 1997

1H-BTR Lemna minor 7d EC10 3.94 Seeland et al., 2012
Desmodesmus subspicatus 72 h EC10 1.18 Seeland et al., 2012
Daphnia galeata 48 h EC50 15.8 Seeland et al., 2012
Ceriodaphnia dubia 48 h LC50 102 Pillard et al., 2001
Aliivibrio fischeri 15 min EC50 41.65 Cancilla et al., 1997
Pimephales promelas 96 h LC50 65 Pillard et al., 2001
Danio rerio 96 h LC50 170 Damalas et al., 2018

5Me-BTR, 4-Me-BTR Ceriodaphnia dubia 48 h LC50 108 Pillard et al., 2001
Pimephales promelas 96 h LC50 38 Pillard et al., 2001
Aliivibrio fischeri 15 min EC50 7.3 Pillard et al., 2001
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studied in rainwater and snowmelt runoff from paved surfaces into the sewer
system. This demarcation is a partial view of reality, but it might provide an
initial perspective of these compounds' threat to the aquatic environment.
For example, direct discharge of Polycyclic aromatic hydrocarbons (PAHs)
into stormwater and a receiver (e.g., a river) will reduce their concentrations
many times over (dilution process); however, they might represent a signifi-
cant health risk when there is low dilution capacity, worsened by reduced
dissolved oxygen concentrations. High concentrations may also occur in re-
tention ponds in urban areas (Durand et al., 2004; Istenič et al., 2011;
Mahler et al., 2012; Stephansen et al., 2020).

3. Results

3.1. BTR concentrations

Table 3 presents the concentration profiles of benzotriazoles andUV sta-
bilizers in the rainwater collected from traffic routes during precipitation.
In the case of rainwater (1st series of tests) the frequency of detection of
each BTRs has been: for 1H-BTR, 4Me-BTR, 5Me-BTR – 91.7% for 5Cl-
BTR – 100% and for UV-326, UV-329 – 0%, the highest concentration of
1H-BTR, amounting to 10,604.6 ng/L, has been detected in the water col-
lected from the L4 measurement point, located in one of the largest car
parks within the city. Concentrations exceeding 1000 ng/L have also
been detected at points L3, L7, L11, and L2. Only one measurement point
(L10 – zone closed to car traffic) did not seem to discharge 1H-BTR in the
waters flowing from paved areas.

The highest concentration of 4Me-BTR, amounting to 3744.4 ng/L, was
detected in the water taken from the L7 measurement point, a road with a
heavy traffic load. Almost all measurement points exhibited concentrations
exceeding 1000 ng/L, except for L1 (469.6 ng/L) and L10 (not observed).
Similar results were observed for 5Me-BTR, with the highest concentration
detected in L4 (6023.6 ng/L).

The 5Cl-BTR appeared in all the examined locations, with the highest
concentration in L1 (24,321.6 ng/L) and the lowest in L8 (1247.4 ng/L).
It should be noted that 5Cl-BTR is the only compound detected even at
the pedestrian crossing L10 (5311.9 ng/L). On the other hand, UV-326
and UV-329 were not detected in all the collected samples.

Fig. 4 presents in the formof box plots a summary of the results obtained
from the first series of tests.

Table 4 presents the concentration profiles of benzotriazoles andUV sta-
bilizers in rainwater collected from traffic routes during snowmelt (2nd se-
ries of tests). The frequency of detection of each BTRs has been: for 1H-BTR,
6

4Me-BTR – 58.3%, for 5Me-BTR – 83,3%, for 5Cl-BTR – 100% and for UV-
326, UV-329 – 0%. The highest concentration of 1H-BTR, amounting to
884.7 ng/L, was detected in the water collected from the L12measurement
point. Thus, the above concentrations are much lower than in the case of
rainwater. In the case of 5 measurement points (L1, L3, L5, L9, and L10),
no 1H-BTR was detected in the samples.

The highest concentration of 4Me-BTR, amounting to 3553.6 ng/L, was
recorded in the water taken from the L7 measurement point. Concentra-
tions exceeding 1000 ng/L have been detected at three more measurement
points (L8, L9, and L11), while in the case of 5 locations (L1, L2, L3, L4, and
L10), no 4Me-BTR was detected in the samples. Similar results have been
obtained for 5Me-BTR – the highest concentration was recorded in L7
(4578.4 ng/L), and concentrations exceeding 1000 ng/L were recorded at
four other measurement spots (L8, L9, L11, and L12). 5Me-BTR has not
been detected at two measurement points (L4 and L6). Concentrations of
5Cl-BTR were detected in all samples, with means ranging between
46,985.6 ng/L (at L10) and 891 ng/L (at L2). As in runoff from rainfall sam-
ples, UV-326 and UV-329 were not detected in all the collected samples.

Fig. 5 presents in the formof box plots a summary of the results obtained
from the second series of tests.

Comparing results from the 1st and 2nd series of tests indicates that, ex-
cept for 5Cl-BTR, the concentrations of benzotriazoles and UV stabilizers
were higher in the 1st series of samples (rainwater). Additionally, the con-
centration of BTRs clearly exceeds the suggested limits in previous studies
(Beltoft et al., 2013; Janna et al., 2011) or drinking water; therefore, they
might represent a risk to drinking water sources.

3.2. Evaluation of the ecotoxicological risk of BTRs

The BTRs-related potential risks in Bialystok vary depending on the
sampling location and season. Fig. 6 (rainwater, first series of tests) and
Fig. 7 (snowmelt, second series of tests) present the maximal BTRs RQ
values obtained based on the parameters given in Table 2 and using four
samples from each of the two series. These figures include results for the
1:1 mixture of 5Me and 4Me-BTR prepared according to the procedures
described in Pillard et al. (2001). 1H-BTR shows the most significant differ-
ence between rainwater and snowmelt, as in the first case, all the analyzed
groups of organisms classified within the range of medium risk, varying
from 0.16 for invertebrates to 0.89 to algae. Oppositely, the RQ did not ex-
ceed the 0.1 low-risks threshold for any group for snowmelt samples.

As previously observed in Table 2, toxicity data is not available for all
types of organisms. In the absence of toxicity data for 4Me-BTR, the average



Table 3
Concentration profiles of benzotriazoles and UV stabilizers in rainwater collected from traffic routes during precipitation.

Sampling point Compounds concentration (ng/L)

1H-BTR 4Me-BTR 5Me-BTR 5Cl-BTR UV-326 UV-329

Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg. ±SD Avg. ±SD

L1 286.8
281.6
291.7

5.2 469.6
460.5
472.9

9.1 415.7
409.2
419.4

6.5 24,321.6
24,319.7
24,326.8

177.5 n.o. – n.o. –

L2 1267.3
1262.2
1278.6

11.3 1545.0
1514.9
1558

30.1 2267.2
2235.3
2282.1

31.9 11,938.1
11,805.7
12,004.3

132.4 n.o. – n.o. –

L3 2748.4
2731.1
2758

17.3 1570.8
1552.4
1779.5

18.4 2016.8
1999.8
2046.9

30.1 4474.2
4437.4
4520.2

46.0 n.o. – n.o. –

L4 10,604.6
10,540.8
10,710.3

105.7 3434.0
3422.5
3459.1

25.1 6023.6
5922
6069.7

101.6 6355.7
6337.4
6401

45.3 n.o. – n.o. –

L5 359.8
352.1
363.9

7.7 1250.7
1238.9
1270.7

20.0 1572.6
1543.3
1590.3

29.3 2167.9
2139.1
2197.6

29.7 n.o. – n.o. –

L6 383.0
376.8
386.3

6.2 2921.8
2914.1
2936.2

14.4 3462.9
3436.3
3503.9

41.0 2938.1
2906.8
2951.2

31.3 n.o. – n.o. –

L7 2151.2
2145.3
2170.5

19.3 3744.4
3730.8
3786.1

41.7 4176.8
4147.7
4221.1

44.3 3027.3
2965.9
3069

61.4 n.o. – n.o. –

L8 600.1
588.7
626

25.9 2347.8
2328.3
2353.3

19.5 2911.5
2871.6
2925.1

39.9 1247.4
1224.7
1259.8

22.7 n.o. – n.o. –

L9 309.4
299.3
317.1

10.1 1224.0
1220.2
1237

13.0 1269.6
1262.8
1282.3

12.7 1653.1
1634.1
1675

21.9 n.o. – n.o. –

L10 n.o. – n.o. – n.o. – 5311.9
5250.9
5361.2

61.0 n.o. – n.o. –

L11 1795.2
1777.5
1801.4

17.7 1918.4
1916.3
1926.1

7.7 2020.7
1987
2071,9

51.2 1313.9
1285.5
1361.3

47.4 n.o. – n.o. –

L12 319.0
317.1
321.1

2.1 1093.7
1084.2
1100.8

9.5 1265.7
1246.3
1277.9

19.4 2332.0
2300.1
2355.9

31.9 n.o. – n.o. –

n.o. - not observed.
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risk level was estimated only for microorganisms, and our findings showed
that differences between samples taken at different times were negligible.
The increased risk values for 5Me-BTR were also due to the high sensitivity
of the microbial tests, and the maximum values were always slightly higher
for precipitation than for snowmelt. Contrary to the other compounds, 5Cl-
BTR exhibited higher values (and well above the high-risk level) in the run-
off from snowmelt samples. However, it is worth mentioning that this
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Fig. 4. Concentration profiles of benzotriazoles and UV stabilizers in rainwater
collected from traffic routes during precipitation.
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assessment was conducted only on Daphnia sp., in the absence of any data
besides from the study of Giraudo et al. (2017). Moreover, there is a lack
of data on temperature's effect on the transformation and toxicity of
PAHs, including BTRs, although studies conducted on single invertebrate
species tend to indicate that their toxicity increases with increasing temper-
ature (Gan et al., 2021).

Analyzing the percentage share of risk quotients levels between all the
sampling points provides additional information (Fig. 8). In one-third of
the sites, the 1H-BTR risk qualified in the middle range for the runoff
from rainfall and can be considered safe in the case of snowmelt samples.
Regarding 4Me-BTR, 17% of the sites present amedium-risk level for snow-
melt. Particular attention should be paid to 5Me-BTR and 5Cl-BTR com-
pounds, as significant shares of their RQx classify at medium-risk and
high-risk levels.

It is also conceivable that soil organisms living in urban areas in contact
with paved surfaces from which rainwater is not effectively channeled
(e.g., temporary yards, minor roads, railway tracks) may be exposed to
such concentrations. Finally, a limited number of organisms, representing
all trophic levels studied, primarily microorganisms but potentially verte-
brates (Mammalia) as well, may occur directly in the sewer system itself
and at the rainwater discharge/retention system or accumulate near the
outlet of the sewer system at the receiving water body (e.g., Actinopterygii).

Bacteria are particularly susceptible to the adverse effects of chemical
compounds as they are present in each of these environments. On the one
hand, they have an extreme potential to reduce and transform pollutants
and disseminate newly created mutations, and exchange genetic information



Table 4
Concentration profiles of benzotriazoles and UV stabilizers in rainwater collected from traffic routes during snowmelt.

Sampling point Compounds concentration (ng/L)

1H-BTR 4Me-BTR 5Me-BTR 5Cl-BTR UV-326 UV-329

Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD Avg.
Min
Max

±SD

L1 n.o. – n.o. – 447.9
444.7
459.3

11.4 5254.6
5160
5329

94.6 n.o. – n.o. –

L2 379.6
374.7
382.9

4.9 n.o. – 339.2
324.5
344.7

14.7 891.0
885.1
893.6

5.9 n.o. – n.o. –

L3 n.o. – n.o. – 429.7
421.6
439.1

9.4 7369.1
7302.8
7396.2

66.3 n.o. – n.o. –

L4 425.7
419.3
435.6

9.9 n.o. – n.o. – 22,330.9
22,198.7
22,529.6

198.7 n.o. – n.o. –

L5 n.o. – 146.5
144.9
150

3.5 391.1
379.4
395.7

11.7 12,751.5
12,593.2
12,968.9

217.4 n.o. – n.o. –

L6 363.6
358.8
371

7.4 128.0
123.7
135.9

7.9 n.o. – 28,301.5
27,997.6
28,479.2

303.9 n.o. – n.o. –

L7 753.8
748.7
762.5

8.7 3553.6
3526.3
3569.8

27.3 4578.4
4538.7
4603

39.7 36,132.0
35,828.5
36,509.4

377.4 n.o. – n.o. –

L8 527.5
517.3
531.9

10.2 1924.6
1891.2
1942.9

33.4 2261.2
2238.3
2295.3

34.1 40,866.0
49,588.5
41,054.3

277.5 n.o. – n.o. –

L9 n.o. – 1075.3
1067.4
1100.9

25.6 1231.0
1201.2
1249.1

29.8 20,023.7
19,936.4
20,169.3

145.6 n.o. – n.o. –

L10 n.o. – n.o. – 213.8
213
216.4

2.6 46,985.6
4663.4
47,387.3

401.7 n.o. – n.o. –

L11 594.2
590.7
605.5

11.3 2924.0
2901.2
2933.4

22.8 4248.7
4239.4
4266

17.3 14,263.4
14,049.1
14,429.6

214.3 n.o. – n.o. –

L12 884.7
872,6
905.9

21.2 764.0
760.5
764.7

3.5 1320.9
1304.3
1349.5

28.6 44,233.0
43,729.3
4469.5

503.7 n.o. – n.o. –

n.o. - not observed.
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on resistance and degradationmechanisms horizontally. Stouten et al. (2000)
summarized studies conducted on in vitro bacteria and mammalian cells
assessing the genotoxic effects of benzotriazoles.

There is almost no information on the toxicity of chlorinated benzotri-
azole derivatives. The only source is a study by Giraudo et al. (2017)
investigating the effects of 5Cl-BTR towards Daphnia magna in a 48-h
acute test. The toxicity of this compound was much higher (LC50 =
28.73) than 5Me-BTR (LC50 = 50.89) or 1H-BTR (LC50 = 93.3); however,
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Fig. 5. Concentration profiles of benzotriazoles and UV stabilizers in rainwater
collected from traffic routes during snowmelt.
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the analysis of differential gene expression showed that 5Cl-BTR down-
regulates only 28 genes and up-regulates 8, while the rest of above men-
tioned BTRs changed the activities of several times more genes (even over
a hundred). The quantitative analysis of chitinase expression also correlates
with the reduction of molt frequency and has been proposed as a potential
marker of 5Cl-BTR exposure. The present study results for the Daphnia
magna with AF1000 indicated an RQ value close to high-risk for runoff
from rainwater and displayed a considerable high-risk value when tested
for snowmelt. This compound exhibits the highest RQ values in this re-
search, which justifies further research in this direction.

This research also contributes to the literature related to the interaction
of BTRs in mixtures of two or more elements. Using the 1:1 4Me-BTR and
5Me-BTR mixture as employed in Pillard et al. (2001), the results in
Figs. 6 and 7 suggest that these calculations seem worthy of further discus-
sion and studies assessing different proportions. For instance, themaximum
RQ values for 4Me-BTR and 5Me-BTR obtained in this study equaled
0.0037444 and 0.0060236 in rainwater, while they were 0.0035536 and
0.0045784 for the snowmelt runoff, respectively. Thus, the 4Me/5Me
ratio accounted for 0.62 in the first case and 0.78 in the second. As this
ratio also varies between sampling sites and over time, and other compound
occurrences are not considered, we do not know precisely how these com-
binations could affect various model organisms, which is an aspect to be
considered in a follow-up paper. In this paper, we followed the assumption
of using the sum of themaximumobserved 4Me-BTR and 5Me-BTR concen-
trations and the toxicological data in Table 2 for these compound mixtures
to estimate the environmental risk assessment. Both for precipitation and
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Fig. 6.Maximal RQ values (based on available literature) calculated from samples of rainwater runoff from paved surfaces in Białystok. Risk thresholds: (H)igh, (M)ean, and
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snowmelt, Allovibrio (representing the decomposers) proved to be the most
sensitive model, exceeding high-risk levels (>1.3 and >1.1, respectively).
Also, risk assessment for the mixture is higher than the sum of risk assess-
ments, and 5Me-BTR constitutes the main factor, which supports the
claim that assessing toxicity assessing the interaction between BTRs
derivatives in mixtures is a relevant research direction. Also, apart from
water, the potential risk of BTRs in other aquatic ecosystems media,
e.g., sediments, remains relatively unexplored (Careghini et al., 2015).

According to the authors (Franco et al., 2017), current regulatory prac-
tice for risk assessment of pollutants suffers from a lack of realism. Among
the limitations of the approach used is the axiom of using acute toxicity lab-
oratory data. This favors typical poisons in risk calculations, while sub-
stances with long-term effects, such as carcinogens, mutagens, hormone
analogs affecting reproduction, etc., may be underrated. This problem
stems from a preference for standardizing data sources rather than a case-
by-case approach and may grow with increasing knowledge of the mecha-
nisms of formation and degradation ofmicropollutants, some ofwhich have
the ability to bioaccumulate and biomagnify in the trophic chain. There-
fore, also in the context of assessment methodology, a shift should be
made from the dilution paradigm as the primary mechanism for reducing
the environmental risk of pollution, to the “boomerang” paradigm rather
(Newman and Unger, 2003).

Moreover, attention is drawn to the significant, even by several orders
of magnitude, spatial and temporal variability of the real dilution of a pol-
lution source in the environment, which implies themodification of the cal-
culation methodology taking into account local geographic, populational
(e.g. density), technical (the ability for partial removal, e.g. in slime separa-
tors), climatic (e.g. water availability, hydrological balance) or seasonal
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Fig. 7.Maximal RQ values (based on available literature) calculated from samples of sno
(L)ow.
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factors. For example, for central European countries, including Poland,
Keller et al. (2014) suggest to use predicted values of annual median dilu-
tion factor between 10 and 40.

Therefore, when discussing the role of dilution on the real expected eco-
logical threat,first of all, the specific conditions for the studied casemust be
characterized, which consist of: (1) the hydrological regime of the main re-
ceiving body of rainwater runoff, and (2) the land management of the
Białystok. The main receiver of wastewater and rainwater from the city
area is a small river Biała – its length is only 32.7 km, of which 20 km
flow within the city boundaries (the catchment area is 133.4 km2 and
about 83 km2, respectively). This causes the hydrological regime of the
river to be strongly disturbed under the influence of urbanization - low
flows dominate in the rainless periods, with the mean lowest (MLQ) placed
at 0.53 m3/s, and the lowest of the lowest (LLQ) reaching even 0.05 m3/s.
On the other hand, during precipitation and immediately after, as well as
during the snowmelt, short-term peaks are observed, up to 21.5 m3/s
(HHQ). A significant ratio of this flow is represented both by treated waste-
water and rainwater. Only the inflow from the municipal WWTP (PE ≈
640 k including industry), can be about Qs ≈ 0.81 m3/s, which is already
a significant proportion of the mean annual flow (MMQ), placed at 1.2
m3/s (ratio 0.3). In turn, the total area of the city within its administrative
boundaries is now102 km2, but due to the consistent development of all the
land incorporated in recent years, the area impermeable to precipitation
has increased dramatically. Currently, 49.2% of the catchment area is cov-
ered by the existing and planned stormwater drainage system, making a
total of 5027.5 ha. Even if we conservatively assume for the calculations,
the catchment area reduced by the runoff coefficient to 1603.9 ha, with
an average annual rainfall of 715 L/m2, another QS ≈ 0.36 m3/s of
5Cl-BTR 4Me+5Me-BTR*
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theoretical average rainwater outflow to the environment is obtained.
Thus, we are faced with a situation where, paradoxically, there are often
the periods during the year, when it is not the runoffs carrying
micropollutants being diluted by the water, but the riverine water is
being diluted in the runoffs. In this case, even BTR concentrations of mod-
erate risk should be considered as having a potential impact on ecosystem
components.

4. Conclusions

Road traffic is one of the largest BTR emitters to the environment. These
emissions are uncontrolled and unmonitored; thus, they are directly
discharged into human habitats and crucial water resources. This paper
quantitatively and qualitatively assessed the environmental risk resulting
from four low molecule benzotriazoles (1H-BTR, 4Me-BTR, 5Me-BTR,
5Cl-BTR) and two benzotriazole UV stabilizers (UV-326, UV-329) in runoff
produced from rainwater (first series of experiments) and snowmelt (sec-
ond series of experiments) in the urban environment. The case study corre-
sponds to Białystok, a Polish metropolitan area encompassing 102 km2 and
300,000 residents.

Dangerous micropollutants were present in all of the analyzed water
samples, and the comparison of both series shows a constant and dynamic
renewal of the micropollutants loads accumulated on impervious surfaces.
Even if it is difficult to accurately determine the source/origin of the de-
tected pollutants, the results suggest that it is possible to correlate them
with the type of cover, traffic intensity, and type of vehicles. In general
terms, samples from rainwater runoff displayed higher pollutant concentra-
tions and RQx than those from snowmelt. BTR group UV stabilizers are in-
soluble in water, and that might have avoided their detection following the
procedures described in the Methods section.

The environmental risk assessment in this research uses conventional
acute and, more rarely, chronic toxicity indices (EC, LOEC), following the
regulations specified in EMA (2006). Themain advantages of this approach
are the relatively low cost of obtaining a minimum sample size, allowing
statistically significant differences to be obtained even for data with low
strength of dependence, the simplicity of performing the test, and the pos-
sibility of replicating the procedure if different laboratories. The number
of data collected and the ease of their statistical processing also allow com-
paring many substances of similar origin or use, their derivatives and trans-
formation products, and they make it possible to compare data obtained
many years ago with new data.

The scientific community agrees that there are still significant knowledge
gaps regarding the acute risks or chronic toxicity of BTRs derivatives, which
commonly have the potential to accumulate in the environment. Moreover,
with the development of knowledge and research techniques about these
compounds, there are also new possibilities to determine the adverse suble-
thal effects of pollutants on organisms, which include: changes in the produc-
tion rate of specific metabolites, genetic expression expressed by RNA
transcription or protein translation, and changes in the structure of the ge-
netic material itself (genotoxicity). These advances would also help in the
risk assessment of the sublethal effects of micropollutants characterized by
low toxicity in classical terms, as in the case of BTRs, but whose chronic ef-
fectsmay affect the endocrine system and reproductive processes, the process
of embryonic development, or DNA damage.

Based on the results, the authors conclude that intake water, tap water,
wastewater, and treated wastewater must be tested to detect and monitor
the residence time of the pollutant loads. Besides the discussed potential re-
search directions that involve assessing the effect of proportions and inter-
actions in the mixtures, future research on BTRs should include developing
effective methods for removing these micropollutants in water treatment
plants and from the polluted environment and water resources.
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