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Abstract: Over time, oil pipes are scaled, which causes problems such as a reduction in the effective
diameter of the oil pipe, an efficiency reduction, waste of energy, etc. Determining the exact value
of the scale inside the pipe is very important in order to take timely action and to prevent the
mentioned problems. One accurate detection methodology is the use of non-invasive systems based
on gamma-ray attenuation. For this purpose, in this research, a scale thickness detection system
consisting of a test pipe, a dual-energy gamma source (241Am and 133Ba radioisotopes), and two
sodium iodide detectors were simulated using the Monte Carlo N Particle (MCNP) code. In the test
pipe, three-phase flow consisting of water, gas, and oil was simulated in a stratified flow regime in
volume percentages in the range from 10% to 80%. In addition, a scale with different thicknesses
from 0 to 3 cm was placed inside the pipe, and gamma rays were irradiated onto the pipe; on the
other side of the pipe, the photon intensity was recorded by the detectors. A total of 252 simulations
were performed. From the signal received by the detectors, four characteristics were extracted,
named the Photopeaks of 241Am and 133Ba for the first and second detectors. After training many
different Multi-Layer Perceptron(MLP) neural networks with various architectures, it was found that
a structure with two hidden layers could predict the connection between the input, extracted features,
and the output, scale thickness, with a Root Mean Square Error (RMSE) of less than 0.06. This low
error value guarantees the effectiveness of the proposed method and the usefulness of this method
for the oil and petrochemical industry.

Keywords: three-phase flow; scale layer thickness; volume fraction independent; MLP neural network

MSC: 68T07; 92B20

1. Introduction

Scale deposition inside oil pipes has caused loads of issues in many oil fields in the
world. Scale formation reduces the effective cross section of pipelines and makes the flow
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of oil products difficult. This factor causes pumps and various equipment to not work
properly. Increasing the amount of scale inside the pipe and not identifying it in time
can even cause an emergency shutdown, damage the oil equipment, increase repair costs,
and decrease efficiency. Therefore, it is necessary to design accurate detection systems to
determine the amount of scale inside the pipe. Researchers always refer to gamma-ray
attenuation systems as the golden standard in determining the various parameters of
multi-phase flows [1–8]. In [1], a laboratory structure compromised of a cesium source,
and a test pipe was applied. The researchers applied the two-phase flow in three regimes:
stratified, annular, and bubbly. By using the counts in both transmitted detectors as input
to the Radial Basis Function (RBF), they succeeded to estimate volume percentages and to
classify the flow regimes. In [2], Roshni et al. used three Group Method of Data Handling
(GMDH) networks to increase the accuracy in determining the volume percentages and in
recognizing the type of flow regimes in three-phase fluids. Although the accuracy increased,
a large computational load was imposed on the system. In 2016, Roshni et al. [3] used
a 60Co source and a detector to determine the type of flow regimes and volume percent-
ages. Failure to extract appropriate characteristics from the recorded signals caused low
accuracy in determining the mentioned parameters. In 2019 [4], researchers used the Jaya
optimization algorithm to predict the volume percentages. Following the introduction of
a system to accurately determine volume percentages and classification of flow regimes,
Sattari et al. [5] used a cesium source, a test pipe, and two NaI detectors. By extracting
time characteristics and by chossing the most effective characteristic, they reduced the
computational load on the neural network and introduced an accurate system. In their
subsequent research [6], they investigated the use of a GMDH neural network to detect
the type of flow regimes and to predict volume percentages. High accuracy was achieved
when determining the volume percentages, but failure to consider the amount of scale
inside the pipe is one of the gaps in the mentioned research. Alamoudi and colleagues [7]
tried to detect the amount of scale thickness in the oil pipe by using a dual-energy source
including Ba-133 and Cs-137. They simulated a two-phase flow in different regimes. They
considered Gamma peak counts of Cs-137 and Ba-133 from the first detector and total
counts from the second detector as inputs of the RBF neural network and succeeded to
estimate the thickness of the scale with a Root Mean Square Error (RMSE) of 0.22. In [8],
the authors modelled a three-phase flow regime in the annular regime. Considering the
scale thickness deposited inside the pipe, they investigated different volume percentages.
Finally, by extracting the Photopeaks of 241Am and 133Ba recorded in the two detectors and
considering them as the inputs of an RBF neural network, they predicted the amount of
scale inside the pipe with an RMSE of less than 0.09. In recent years, due to problems with
using radioisotopes including the need to use protective clothing when dealing with this
device (due to the inability to turn it off), problems in transportation, etc., researchers used
X-ray tubes to determine the parameters of multiphase flows [9–12]. In [9], the researchers
determined the regime type and volume percentage of two-phase flows using an X-ray
tube and a sodium iodide detector. They extracted temporal characteristics from the signals
received by the detector and used these characteristics to train two Multi-Layer Perceptron
(MLP) neural networks. In [10], three-phase flows were investigated. In this way, three
annular, stratified, and homogeneous flow regimes were simulated in different volume
percentages. In this research, three RBF neural networks were trained with the frequency
characteristics of the received signals, which were relatively accurate. In [11], an X-ray
tube was used to design a control system. Four petroleum products, which are blended
two by two at various volume rates, were modelled by the MCNP code. The recorded
signals were placed as inputs of three MLP neural networks to predict the volume ratio of
three products. The researchers stated that the volume ratio of the fourth product could be
calculated by having the volume ratio as the other three products. Although the method
introduced predicted the type and number of products, the lack of feature extraction tech-
niques used prevented high accuracy. Developing upon previous research [11], Balubaid
et al. [12] used wavelet transforms for feature extraction. This research not only increased



Mathematics 2022, 10, 3544 3 of 13

the system’s accuracy but also reduced the computational load. Further studies in the field
of multiphase flowmeters can be found in [13–19]. In [20], research has been conducted to
determine the scale value inside the pipe. Although the number of detectors was reduced
to one, the system error was relatively high. Recently, neural networks have been used
in determining different parameters in different fields of science, such as Unsupervised
learning-based subset simulation with customizable intermediate failure probability for
reliability analysis [21], estimating combined cycle power plants’ electrical output [22];
concrete made with synthetic sand’s compressive strength prediction [23]; optimization
of existing metaheuristics for concrete slump modeling [24]; using an equilibrium opti-
mization model to estimate the tensile strength at a fracture of concrete [25]; identifying
structural damage with an innovative artificial bee colony algorithm [26]; and laser-cut
geometries for soft electroactuators [27].

In the current research, inspired by previous studies, an attempt was made to design
a high-precision system to detect the scale value inside the pipe. For this purpose, a
three-phase flow regime consisting of water, gas, and oil in different volume percentages
was simulated. Different values of scale thickness were considered in each simulation. A
dual-energy source (241Am and 133Ba) and two detectors were positioned on both sides
of the test pipe. From the signals received from each detector, two characteristics of the
Photopeaks of 241Am and 133Ba were extracted. These features were applied to the inputs of
the MLP neural network while the desired output was the scale thickness value inside the
pipe. The main contributions of the present investigation can be categorized as following:

1. Increasing accuracy in the detection system;
2. Obtaining the value of scale thickness in the event that a three-phase flow passes

through the oil pipe;
3. Investigating the performance of the characteristics of the Photopeaks of 241Am and

133Ba for the first and second detectors when determining the thickness of the scale;
4. Reducing the computational load by extracting effective features.

2. Simulated Detection System

The configuration of the detection system proposed in this investigation is simulated
by the MCNP code [28]. In recent years, the use of this platform for simulating radiation-
based systems has been greatly appreciated by researchers [29–32]. The detection system
consists of a dual-energy source, a steel test pipe, and two sodium iodide detectors. The
gamma sources include 241Am and 133Ba radioisotopes. The test pipe used for simulating
the three-phase flow in the stratified regime as well as the deposited scale has an inner
diameter of 10 cm and a thickness of 0.5 cm. Two 2.54 cm × 2.54 cm detectors were located
at a distance of 30 cm from the source in such a way that one of them was exactly in front of
the source and the other was at an angle of 7◦ to the hypothetical line between the source
and the first detector. As mentioned, three-phase flow was simulated in a stratified regime
consisting of water, oil, and gas in volume percentages between 10% and 80%. Barium
sulfate (BaSO4), which has a density of 4.5 g·cm−3, was used to simulate the scale at
thicknesses of 0, 0.05, 1, 1.5, 2, 2.5, and 3 cm inside a cylindrical pipe. The water, oil, and gas
considered in this simulation had densities of 1, 0.826, and 0.00125 g·cm−3. The structure
simulated in this study was validated with the experimental structure implemented in [1].
A two-phase flow was performed in the annular regime, and the same structure was
implemented in the MCNP code. The registered counts obtained from the detectors of the
simulation structure and the experimental structure were compared with each other. It was
observed that there is an acceptable match between the two. Seven scale thicknesses × 36
different volume percentages = 252 simulations were performed. From each simulation,
four characteristics, named the Photopeaks of 241Am and 133Ba for the first and second
detectors, were extracted; in total, a matrix of 4 × 252 was obtained for neural network
training. The desired output of this research was the thickness of the scale inside the pipe.
The simulated configuration is depicted in Figure 1. Figures 2 and 3 show ternary surface
plots related to the count under the Photopeaks of 241Am and 133Ba in the second detector
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for various combined gas, oil, and water volume fractions at the thickness scales of 0 and
1.5 cm, respectively. As can be observed from the comparison of these two figures, with
an increase in the thickness of the scale, the count recorded by the detectors decreases,
which can be an important factor in distinguishing the selected characteristics. The graph
of extracted characteristics in terms of scale thickness in constant volume percentage (10%
gas, 40% oil, and 50% water) is shown in Figure 4.
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3. MLP Neural Network

Millions of neurons, or little computer units, make up the human brain. These neurons
are all linked to one another. Dendrites, which are branching on neurons, are where other
neurons send information. The nucleus, which is a neuron’s processing center, converts
input data into output data that are then sent to other neurons via an output line called
an axon. These all take place in the biological and physiological realms. One of the most
popular approaches developed by researchers to model this function in mathematics is
the MLP neural network. There are input and output layers in this network’s structure.
Between these two layers, there may be a variety of hidden layers. A number of mathe-
matical operations are carried out in the hidden layers and are introduced as the activation
function. The type and level of nonlinearity of the available data determine the structure
and number of these layers, and the type of activation function. Numerous studies have
used intelligent computing systems to determine various parameters in different fields of
science [33–53]. The output of neurons in the mathematical formulation of neurons is as
follows [54,55]:

nl =
u

∑
i=1

xiwij + b j = 1, 2, · · · , m (1)

uj = f

(
u

∑
i=1

xiwij + b

)
j = 1, 2, · · · , m (2)

output =
j

∑
n=1

(unwn) + b (3)

in which x presents the input parameters; the weighting factor, the bias term, and the
activation function are indicated as w, b, and f, respectively. In the design of artificial neural
networks, in order to avoid the problem of over-training and under-training, the available
data are divided into three categories: training, testing and validation. The training data
include the majority of the data, and these data are used in order for the neural network
to see them and fit them. Validation data are used to ensure the correct training process
in such a way that these data are used for network testing. The test data are applied to
the neural network at the end of the neural network training process in order to ensure
the accuracy of performance. When a neural network can work properly in operational
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conditions, it performs well against all three introduced categories. The number of training,
validation, and test data in this research are 176, 38, and 38, respectively.

4. Results and Discussion

The four features introduced in the former section were applied to the input of the
MLP network, which consisted of a 4 × 252 matrix. The output of the neural network
was the thickness of the scale inside the pipe, which is a 1 × 252 matrix. Several neural
networks with different numbers of hidden layers and different numbers of neurons in the
hidden layers were implemented, and a structure including two hidden layers, 10 neurons
in the first hidden layer and 5 neurons in the second hidden layer, could accurately estimate
the thickness of the scale inside the pipe. The structure of the designed MLP network is
shown in Figure 5. To calculate the error value of the implemented network, two criteria,
Mean Square Error (MSE) and RMSE, were considered. The equations of these criteria are
as follows:

MSE =
∑N

j=1
(
Xj(Exp)− Xj(Pred)

)2

N
(4)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(5)

in which N indicates data number; ‘X (Exp)’ and ‘X (Pred)’ illustrate the experimental and
predicted (using network) values, respectively.
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In order to show the correct performance of the neural network, three fitting, regres-
sion, and error histogram graphs were plotted for three categories: training, validation
and testing data (Figure 6). In the fitting diagram, the desired output is shown with a red
dashed line and the network output is shown with a black line. In the second diagram,
the desired output is visible as a red dashed line, and the outputs of the neural network is
visible as black squares. This diagram is presented as a regression diagram. The horizontal
axis in this diagram shows the data number, and the vertical axis shows the thickness of the
scale. The histogram diagram shows the value of error distribution; the distribution of this
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value is around the zero number, indicating the low error value of the designed network.
Table 1 shows the characteristics and errors of the designed neural network. Table 2 shows
a comparison in terms of the amount of error in the designed detection system with the
systems introduced in previous research. The general process of the presented methodology
to determine the thickness of the scale inside the pipe can be seen in Figure 7. According to
this figure, in the first stage of the configuration of the system, the flows passing through
the pipe and the different thicknesses of the scale inside the pipe were simulated by the
MCNP code, and the signals received by the detectors were labeled. Then, the received
signals were processed and four characteristics of the Photopeaks of 241Am and 133Ba for
the first and second detectors were extracted from the signals of each simulation. The
characteristics obtained were assigned as inputs of the MLP neural network to estimate
the scale thickness within the pipe. After training the neural network, in order to ensure
correct functioning of this network, the output results of the network were compared with
the desired output.
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Table 1. Designed network charectristics.

Type of Artificial Neural Network (ANN) MLP

Input layer neurons 4

The first hidden layer neurons 10

The second hidden layer neurons 5

Output layer neurons 1

The number of epochs 600

Hidden neuron activation function Tansig

Training data Validation data Test data
MSE of predicting scale thickness

0.002 0.003 0.002

RMSE of predicting scale thickness 0.05 0.06 0.05

Table 2. A comparison of the accuracy of previous studies and the proposed detection system.

Ref Extracted Features Type of Neural
Network

Maximum
MSE

Maximum
RMSE

[6] Time features GMDH 1.24 1.11

[5] Time features MLP 0.21 0.46

[56] No feature extraction GMDH 7.34 2.71

[57] Frequency features MLP 0.67 0.82

[58] No feature extraction MLP 17.05 4.13

[59] No feature extraction MLP 2.56 1.6

[60] Compton continuum and counts under full
energy peaks of 1173 and 1333 keV RBF 37.45 6.12

[61]
Full energy peak, photon counts of Compton

edge in transmission detector and total count in
the scattering detector

MLP 1.08 1.04

Current study Photopeaks of 241Am and 133Ba for the first and
second detectors MLP 0.003 0.06
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The low error value obtained in this research was due to the correct processing of
the signals obtained and the training of the neural network with effective characteristics
of the signal. A very basic limitation in this research is the use of radioisotope devices,
which requires protective equipment and clothing due to the harmful effects on the human
body. Investigating different characteristics such as time, frequency, and wavelet transform
characteristics and examining the performance of different neural networks for productivity
in future research are strongly recommended to researchers in this field.

5. Conclusions

It is important to detect the amount of scale deposited inside oil pipes because failure
to address this important issue can cause problems for the operation of all oil equipment
and can even cause an emergency shutdown of the entire oil field. Therefore, designing an
accurate system to detect the amount of scale inside the pipes and taking timely action to
solve this problem could play a vital role in improving the performance of the oil industry.
In this research, in order to introduce an accurate system, the gamma-ray attenuation
technique was used to measure the thickness of the scale inside the pipe. The structure of
the detection system comprised of a dual-energy source and two sodium iodide detectors,
which are placed on both sides of the pipe in which the amount of the deposited scale is
to be measured. This structure was simulated using the MCNP code. Three-phase flow
in a stratified regime was simulated throughout a range of volume fractions from 10%
to 80%, with corresponding scale values explored from 0 cm to 3 cm. From the signals
received from all the simulations, four features named the Photopeaks of 241Am and 133Ba
for both detectors were extracted and used in the design of a neural network. An MLP
neural network was trained in a condition where the mentioned features were considered
as input and the scale thickness value was considered as output. This neural network
was capable to estimate the thickness of the scale with an RMSE of 0.06, that is a quite
low error in comparison with the former studies. The use of radioisotope devices in
this research is the biggest challenge because it is necessary to use protective clothing to
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maintain the health of those working with these devices. Investigating time, frequency,
wavelet transform, etc., and investigating the performance of different neural networks
including deep neural networks can be introduced as the subject of future research. The
detection system introduced in this research is very useful for detecting the amount of scale
inside a pipe and solving the mentioned problems caused by the scale depositing, and its
use for oil industries is strongly recommended.
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