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A B S T R A C T   

One of the key reasons for the performance discrepancy between a building’s intended usage and the actual 
operation is Heat Loss, which describes a building’s envelope efficiency during in-use circumstances. In this 
setting, the ANN models’ use for energy analysis of green buildings has become more established. This research 
aims to anticipate the heat loss of green buildings utilizing two artificial neural network-based methodologies 
(ANN). In particular, TLBO and BBO are used and contrasted. Additionally, RMSE, MAE, and R2 are used to 
calculate an absolute error for predicting heat loss to gauge the accuracy of the findings. The suggested TLBO- 
MLP standard is a reliable method with a positive outcome (RMSE = 0.01012 and 0.05216, and R2 =
0.99536 and 0.9651). Also, according to the training error ranges of [− 0.0006078, 0.01133] and [− 0.00040708, 
0.010181] and testing error ranges of [0.0004724, 0.068666] and [0.0021984, 0.057688] for BBO-MLP and 
TLBO-MLP, respectively, shows that the TLBO-MLP reaches the lower range of error and can predict the heat loss 
with higher accuracy and it could properly forecast the heat loss of building technologies. Even so, the BBO-MLP 
standard provides this research with satisfactory performance (R2 = 0.9943 and 0.95175, and RMSE = 0.01122 
and 0.06112). To increase the precision of calculating the heat loss of buildings, specifically integrating them 
with optimization algorithms, further study is required.   

Introduction 

A new review by the Intergovernmental Panel on Climate Change [1] 
illustrated that the most significant increase in carbon emissions ema-
nates from electricity generation, industry, transport, and building op-
erations [2]. The building section allocates for almost 40 % of the whole 
energy utilization in various countries; this illustrates the significance of 
reducing energy utilization in mentioned industry [3–5]. 

In oil-rich and oil-producing nations, there is a pressing demand for 
rapid energy conservation because of dwindling supplies, restricted 
accessibility, and rising prices for energy everywhere in the world [6]. 
Increasing the thermal insulation of buildings is an essential factor in 
saving energy [7,8]. This is especially important in warm regions, where 
there is a relatively large requirement for energy to be used in chilling 

via air conditioning [9]. The thermal conductivity of the cell matrix and 
the cell walls, as well as convection and radiation, are major de-
terminants of thermal properties, with the cell matrix playing the most 
significant role in determining the total thermal transmission features. 
Concerns regarding the environment and energy have captured the 
attention of people all across the world in recent years [10]. 30 % of the 
initial energy usage in the world and nearly-one-third of the world’s 
carbon emissions are attributable to the construction industry [11]. 
Because of increased urbanization, climate change, future water re-
sources, and other factors, global building energy demand has 
constantly been growing [10,12,13]. 

The pertinent criteria emphasize the enhancement of thermal func-
tion, and associated regulations are absent. Nevertheless, assuming only 
the thermal performance appears to be against the notion of green 
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building. It is still necessary to research and examine whether an 
improvement in the building environment’s thermal function can 
significantly save energy and environmental and economic advantages 
[3,8]. The exact building exterior structure has been optimized by 
several investigators using optimization selection methods and building 
simulation software with the goal of improving thermal performance, 
expense, and environmental effects [14–19]. Often, different techniques 
correlate to the building’s thermal function as described in pertinent 
standards. Deployment of multi-index assessment methods can lead to 
building exterior designs’ development. The actual thermal usage in 
operating conditions is influenced by a variety of parameters, including 
actual external temperature variations, people working habits, the 
matching of efficiency improvement between exterior structures, etc., 
even though the green building’s thermal performance has been 
enhanced based on conventional constructions [9,20,21]. This causes a 
significant disparity between the factual thermal consumption and those 
calculated by modeling. There is typically a divergence between a 
compartment’s actual and expected overall thermal performance. 

With the expansion of the Green Building’s Assessment Standard and 

building energy efficiency standards, the necessities for building enve-
lope’s thermal performances have gently improved [22,23]. However, 
just considering the thermal implementation versus the residential 
building’s concept, the related standards pay much consideration to 
improve the thermal performance, and there is a deficiency of corre-
sponding suggestions and regulations on selecting materials [24,25]. 
Various researchers have utilized software to simulate buildings and 
tools for optimization selection to optimize a particular building struc-
ture with the thermal implementation, environmental impact, and cost 
as targets [26–35]. 

In various engineering inquiries, ANNs are a subject of utmost sig-
nificance [36]. Various thermal transmission applications have exten-
sively used these networks, including predicting building heating loads, 
wasted heat retrieval, solar energy, heat exchangers, etc. [27,35,37–40]. 
The characteristics of a jet impingement nanofluid flow within a 
microchannel heat sink were anticipated by Naphon et al. [41] using 
artificial neural networks in conjunction with computational fluid dy-
namics. During the training phase, the Levenberg-Marquardt Backward 
propagation (LMB) was considered to optimize the error ratio and create 
the best possible ANN model. There was a proportion of 1.25 percent 
error between the outcomes that were determined and those that were 
predicted. Acikgoz et al. [16] conducted a series of experiments in an 
experimental chamber with unchanged dimensions to study the thermal 
transport’s characteristics in a room of realistic size. Studying the 
thermal characteristics of radiant heating was accomplished using ANN 
methods [42]. In this instance, it was determined that the Levenberg- 
Marquardt approach was the most precise. An ANN was used by 
Moya-Rico [43] to forecast the thermal exchange and TTHE pressure 
drop. Corrugated and smooth inner tubes were subjected to empirical 
assessment, and a fluid employed in the food industry was a working 
fluid. They discovered that an ANN model containing two hidden layers 
provided an excellent agreement with the empirical data. The mean 
relative error was approximately 1.91 percent for the thermal trans-
mission and 3.82 percent for the pressure drop. 

Due to the increasing cost of energy and climate changes, it was 
necessary to decrease the use of carbon-based energy sources’. An 
effective measure that can be utilized in this regard is the building’s 
thermal insulation [44]. Remaining energy used for heat insulation in 
buildings, CO2 emissions are decreased. An experimental study has been 
done in the current article. It took a year to collect the dataset. The 
collected dataset contains different wall materials. Then, the effect of 
different thermal insulation materials on CO2 emissions was studied 
experimentally, and the energy performance of different wall types was 
examined with different insulation materials and their effects on CO2 
emissions were investigated (section 2, Table 1). Afterwards, artificial 
intelligence was used to predict the heat loss. For this purpose, first of all 
multi-layer perception was applied to the model. Results indicate that 
swarm intelligent methods can accurately predict the heat loss. Finally, 
two hybrid algorithms; namely BBO and TLBO, were used to evaluate 
the accuracy rate of predicting these methods in predicting the heat loss. 
But also, further studies are required to increase the precision of 
calculating the heat loss of buildings and explicitly integrating them 
with optimization algorithms. 

To forecast the heat loss reduction analyses in thermal insulating 
materials, an ANN is used in this research. The ANN is associated with 
two nature-inspired optimization techniques [45]. The mathematical 
analyses allow collecting the data sets necessary for the ANN’s training. 
The thermal transmission coefficients of the wall (W/mK), the thermal 
transmission coefficients of the coating material (W/mK), the outside 
and inside temperatures, and the external surface temperature are all 
taken into account when calculating the amount of heat loss reduction. 
Because of their high accuracy and wide applicability, the models 
established in this study can be used for various purposes, including 
performing heat loss reduction analyses on thermal insulating 
compounds. 

This overview is divided into five sections. The datasets and 

Table 1 
Wall types with indoor, outdoor, and external surface temperature.  

Wall types 
and heat 
transfer 
coefficients 

Coating 
Material 
and heat 
transfer 
coefficients 

Indoor 
Temperature 
(◦C) 
(14:15–17:00)  

Outdoor 
Temperature 
(◦C) 
(14:15–17:00) 

External 
Surface 
Temperature 
(◦C) 
(14:15–17:00)  

XPS (0.035 
W/mK)  

− 4.2–18.6 − 0.3–19.6 

Reinforced 
concrete 
(2.1 W/ 
mK) 

EPS (0.040 
W/mK)  

21–22.3 0–20  

Aerogel 
Insulation 
Plaster 
(0.013 W/ 
mK)  

− 0.4–19.4  

Plaster (1 
W/mK)  

2.1–21  

XPS (0.035 
W/mK)  

− 4.2–18.6 − 0.6–19.2  

EPS (0.040 
W/mK)  

21–22.3 − 0.5–19.7 

Red Brick 
(0.45 W/ 
mK) 

Aerogel 
Insulation 
Plaster 
(0.013 W/ 
mK)  

− 1.1–19  

Plaster (1 
W/mK)  

0.9–20.3  

XPS (0.035 
W/mK)  

− 4.2–18.6 − 1–19  

EPS (0.040 
W/mK)  

21–22.3 − 0.9–19.6 

Aerated 
Concrete 
(0.11 W/ 
mK) 

Aerogel 
Insulation 
Plaster 
(0.013 W/ 
mK)  

− 2.1–18.8  

Plaster (1 
W/mK)  

0.3–20.2  

XPS (0.035 
W/mK)  

− 4.2–18.6 − 0.6–19.3  

EPS (0.040 
W/mK)  

21–22.3 − 0.7–19.8 

Briquette 
(0.63 W/ 
mK) 

Aerogel 
Insulation 
Plaster 
(0.013 W/ 
mK)  

− 0.9–19.1  

Plaster (1 
W/mK)  

1.1–20.5  
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attributes used in the heat loss prediction and the research data and 
predicting model are reviewed in section 2. Section 3 will cover the 
presentation of the methods and materials. The results are presented in 
Section 4, along with an explanation of the analysis and the conclusions 
obtained when the training and test datasets were built using ANN ap-
proaches. The paper has reached its conclusion, and section 5 summa-
rizes the approaches used to decide which combinations are optimal. 

Established database 

Reducing reliance on carbon-based energy sources is necessary 
because of the converging factors of increasing energy expenses and 
climate change [5]. The installation of thermal insulation in buildings is 
one of the strategies that can be utilized in this context, which is among 
the most efficient of the available options. CO2 emissions can be lowered 
in buildings by using less energy for heating and cooling and heat 
insulation [26]. Experiments are carried out for this investigation to 
explore the effect of various thermal insulation applications on CO2 
emissions in the climatic situations of Hakkari. Using different insulating 
materials (plaster, eps, xps, aerogel) for this objective, the energy per-
formance of several wall types (red brick, reinforced concrete, aerated 
concrete, and briquette) is tested as well as their impacts on CO2 emis-
sions (Fig. 1 and Table 1). 

The thermal transmission coefficients of the wall (W/mK), the 
thermal transmission coefficients of the coating material (W/mK), the 
interior temperature, the exterior temperature, and the external surface 
temperature are the parameters that are used as inputs, and the amount 
of heat loss (W) is output variable in this study. Fig. 2 illustrates both the 
input and output layers of the distribution system (Table 2). 

Methodology 

Maps, modeling approaches, model validation, and optimization 
algorithm analysis are required to be used to perform the three tasks 
outlined before in this part successfully. Detailed explanations of each 
phase are provided below, and the flow chart of the current research is 
illustrated in Fig. 3. 

Artificial neural network 

In a virtual environment, simulations of the human nervous system 
like ANN seek to represent the organization and function of the nervous 
system of humans [46,47]. Employing a neural network containing 
artificial neural interconnections, it is feasible to get an estimate or 
approximation of a function [48,49]. Two input and output layers and 
hidden layers for feature manipulation are common components of an 
ANN [50]. Fig. 2 presents the ANN model used for this study. There has 

been a substantial expansion in the use of neural networks for fore-
casting and categorizing data in recent decades [51]. This network 
possesses at least one hidden layer in addition to having output and 
input. The data for this network is divided into two parts: training and 
testing. ANN is an aggregation of many perceptrons or neurons at each 
layer. Whenever input data is categorized in the forward orientation, 
this network is called a feed-forward neural network. The output, hid-
den, and input layers make up the fundamental layers of an ANN. The 
input layer receives the data, which is then processed by the hidden 
levels, and the outcomes are returned by the output layer [52]. Specific 
decimal weights that will be used after learning are learned by the layers 
comprising the neural network [53]. 

Images, text, and data tables respond favorably to the ANN approach. 
When dealing with nonlinear functions and learning weights, ANN 
possesses the benefit of being able to translate any input into an output 
efficiently [54]. This gives it a competitive advantage. A universal 
estimation is a complex connection between input and output data 
learned by an ANN since the activation functions are nonlinear. Within 
the realm of science, the application of ANNs is becoming an increas-
ingly prevalent practice [55,56]. 

Fig. 3 is an illustration of the artificial neural network’s underlying 
structure. The weights of all inputs are added together for each neuron 
output via activation functions, and the weights of all neuron inputs are 
added together for each bias weight. To obtain gradients, the neural 
network weights are updated with the help of backpropagation. During 
backward propagation, the gradient has a chance of completely dis-
appearing or exploding [57]. 

Hybrid model development 

The MLP is used in conjunction with two optimizer methods, the BBO 
and the TLBO, to achieve the greatest possible performance with the 
lowest possible error rate. Fig. 3 depicts the attributes and construction 
of the regarded ANN, which has five neurons in its hidden layer. This 
ANN is used to anticipate the heat loss (W) in contexts of the thermal 
transfer coefficients of the wall (W/mK), the thermal transfer co-
efficients of the coating material (W/mK), the inside temperature, the 
outside temperature, external surface temperature, and finally the 
output variable. It is essential to point out that to implement the ANN 
containing five neurons while maintaining the least amount of error 
possible, the trial-and-error technique is considered. By assigning biases 
and weights, these networks compute outputs. The network structure is 
theoretically added to the evolutionary processes to make the ANN as 
optimal as possible. The weights and biases of the unreinforced ANN are 
being replaced with the best possible alternatives using optimization 
methods in the present investigation. It is important to remember that 
the algorithms mentioned above are carried out among ten communities 
(i.e., 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500). Calculating 
RMSE and R2 to assess the suggested algorithms requires Eqs. (1) and 
(2), respectively. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
[(Yisimulated − Yipredicted )]

2

√
√
√
√ (1)  

R2 = 1 −
∑N

i=1(Yisimulated − Yipredicted )
2

∑N
i=1(Yisimulated − Yisimulated )

2,Yisimulated =
1
n

∑N

i=1
Yisimulated (2)  

Biogeography–based optimization algorithm (BBO) 
The scientific study of the patterns of the geographical dispersion of 

living things through space and time is known as biogeography [58]. In 
the early 19th century, Wallace and Darwin were the first researchers to 
research this subject. The numerical models of island biogeography 
developed by MacArthur and Wilson [59] in the 1960s demonstrate that 
the type abundance of the island might be anticipated in terms of 
characteristics like habitat region, extinction percentage, and 

Fig. 1. A 3D view of different wall types.  
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Fig. 2. The graphically distribution of the input and output layers.  

Table 2 
Neural network optimization results.  

Number of neurons Network results Scoring Total score RANK  

RMSEtotal RMSEtrain RMSEtest RMSEtotal RMSEtrain RMSEtest 

1  0.515  0.481  0.505 2 2 2 6 9 
2  0.495  0.456  0.484 3 3 3 9 8 
3  0.367  0.372  0.369 5 6 6 17 5 
4  0.271  0.302  0.281 8 8 8 24 3 
5  0.570  0.550  0.564 1 1 1 3 10 
6  0.126  0.155  0.135 10 10 10 30 1 
7  0.238  0.294  0.256 9 9 9 27 2 
8  0.490  0.452  0.479 4 4 4 12 7 
9  0.359  0.397  0.371 6 5 5 16 6 
10  0.330  0.305  0.322 7 7 7 21 4  
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immigration rate. Simon [60] established the BBO algorithm by 
applying the island biogeography’s mathematics to the problem. In this 
algorithm, a strategy is similar to an island, the elements of the solution 
are comparable to a collection of suitability index variables (SIVs), and 
the solution fitness is similar to the island’s species richness or habitat 

suitability index (HSI). An essential part of the algorithm is the equi-
librium hypothesis of island biogeography, suggesting that islands with 
a higher HSI possess a high level of species migration, and islands with a 
lower HSI experience a high rate of species migration. The straightfor-
ward linear species diversity’s model in a single island is depicted in 

Fig. 3. (a) The flow chart of recent study. (b) The basic structure of MLP in the current study.  

Table 3 
Network results based on two statistical indices for various proposed BBOMLP swarm size.  

Swarm size Training dataset Testing dataset Scoring Total Score Rank  

RMSE R2 RMSE R2 Training Testing   

50 0.01266 0.99273 0.06533 0.94467 6 6 9 9 30 2 
100 0.01427 0.99075 0.06685 0.942 4 4 8 8 24 3 
150 0.01199 0.99348 0.07738 0.92145 9 9 3 3 24 3 
200 0.01496 0.98983 0.0677 0.94045 3 3 7 7 20 6 
250 0.01418 0.99087 0.10254 0.8573 5 5 1 1 12 9 
300 0.01223 0.99322 0.08521 0.90387 8 8 2 2 20 6 
350 0.01262 0.99278 0.07451 0.92738 7 7 4 4 22 5 
400 0.0174 0.98622 0.07289 0.93064 1 1 5 5 12 9 
450 0.0159 0.98851 0.06894 0.93818 2 2 6 6 16 8 
500 0.01122 0.9943 0.06112 0.95175 10 10 10 10 40 1  

Fig. 4. The variation of the mean square error for the (a) bbomlp, and (b) tlbomlp predictive network.  
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Fig. 1. According to this model, the rate of emigration μ and the rate of 
immigration λ are both functions of the island’s HSI value [60,61]. 

Migration and mutation are the two types of operators employed by 
BBO. An SIV is moved from an emigrating island to another one that is 
immigrating at any time by the migration operator. These islands are 
chosen in a probabilistic manner according to the μ and λ rates. Based on 
the steady-state probability p of species number on the island, the 

mutation operator will randomly alters an SIV. Algorithm 1 indicates the 
fundamental BBO technique, where rand() produces a real number 
which is selected randomly in the range of [0,1] and randd() produces a 
random amount in the range of the dth SIV. 

Algorithm 1. A basic algorithm of BBO 

Fig. 5. Accuracy results of training dataset for different proposed BBOMLP structure.  
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Fig. 6. Accuracy results of testing dataset for different proposed BBOMLP structure.  
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Fig. 7. Accuracy results of training dataset for different proposed TLBOMLP structure.  

Fig. 6. (continued). 

Table 4 
Network results based on two statistical indices for various proposed TLBOMLP swarm size.   

Training dataset Testing dataset Scoring Total Score Rank 

Swarm size RMSE R2 RMSE R2 Training Testing 

50  0.01849  0.98442  0.07228  0.93183 1 1 1 1 4 10 
100  0.01078  0.99474  0.04257  0.97689 8 8 10 10 36 2 
150  0.01537  0.98926  0.06725  0.94127 2 2 4 4 12 8 
200  0.01337  0.99188  0.07115  0.93402 3 3 2 2 10 9 
250  0.01115  0.99436  0.05968  0.95405 7 7 6 6 26 4 
300  0.01222  0.99322  0.06053  0.9527 5 5 5 5 20 6 
350  0.01049  0.99502  0.05534  0.96062 9 9 8 8 34 3 
400  0.01012  0.99536  0.05216  0.9651 10 10 9 9 38 1 
450  0.01181  0.99368  0.05965  0.95411 6 6 7 7 26 4 
500  0.013  0.99233  0.06774  0.94039 4 4 3 3 14 7  
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It is important to note that, in the most recent version of the BBO 
code, which was published by Simon [60], it is recommended to carry 
out one more iteration of fitness analysis and sort the solution before 
each generation’s mutations. The algorithm’s effectiveness may be 
improved by this implementation; nevertheless, this increases the fre-
quency of function evaluations (NFE) performed during each genera-
tion. Our new approach can significantly enhance performance with 

only n function assessments per generation, as will be observed in the 
following section assuming a population size of n. The direct cloning of 
an SIV from one island to another, conducted by the primary BBO’s 
migration operator, restricts the component variety of emerging islands. 
Ma and Simon [31] established the mixed BBO (B-BBO), and it takes 
advantage of the mixed migration to substitute Line 8 of Algorithm 1, as 
seen in the following: 

Xi,d = αXi,d +(1 − α)Xj,d (3)  

where α indicates a real number between 0 and 1. Although it was 
suggested for limited optimization in Ref. [62], the B-BBO technique 
works better than the basic BBO on various other optimization issues. 

Teaching–Learning–Based optimization algorithm (TLBO) 
Every person should make an effort to improve himself by picking up 

new skills from the experiences of others as part of an essential process 
(teaching–learning) [24]. TLBO is the name of an algorithm that was 
developed by Rao et al. [63,64] and Rao and Patel [65]. This algorithm 
imitates the classic teaching and learning process in a classroom setting 

Fig. 7. (continued). 
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[66]. TLBO models two basic phases of learning: (i) through the teacher 
and (ii) interacting with other learners [24]. A group of students (i.e., 
learners) is regarded as the population in the population-based algo-
rithm known as TLBO, and the many topics presented to the learners are 
comparable to the various design parameters of the optimization issue. 
The learner’s outcomes are equivalent to the issue’s fitness value. It is 
generally agreed that the teacher offers the most effective solution out of 
the whole population. The TLBO algorithm’s functioning is described 
below [65]. 

Teacher phase. This portion is essential for simulating the learning 
process between the teacher and the pupils (also referred to as learners). 
A teacher works to enhance the class’s average score during this in-
struction phase by sharing knowledge with the pupils. Consider there is 
‘m’ subjects (variables of design) offered to ‘n’ learners. At any ordinal 
teaching–learning cycle, i, Mi.j is the mean result of the learners in a 
particular subject ‘j’ (j = 1, 2, …, m). 

The best learner is regarded as a teacher in this algorithm because a 
teacher is the individual with the most expertise and understanding of a 
topic. Let Xtotal,kbest,i represent the consequence of identifying the perfect 
learner as that cycle’s teacher across all topics. To raise the knowledge’s 
level, the teacher will exert her/his full commitment. However, stu-
dents’ levels of comprehension will be proportional to both the in-
struction’s quality provided by the teacher and their fellow students’ 
quality in the classroom. Because of this, the differential between the 
score of teacher’s and the average student score for each topic is rep-
resented as follows: 

Difference Meanj,i = ri(Xj,kbest,i − TFMj,i) (4)  

where Xj,kbest,i indicates the teacher’s result (i.e., best learner) in subject 
j. TF represents the teaching factor, which determines the changed value 
of the mean, and ri indicates a random number between [0 to 1]. The TF 
value can be 1 or 2. The TF is determined as follows: 

TF = round[1+ rand(0, 1){2 − 1} ] (5) 

rand indicates a random number (between [0 to 1]). The TF value is 
determined randomly by Eq. (5). 

According to the following expression, based on the DifferenceMeanj,i , 
the current solution is updated in the teacher phase: 

X′
j,k,i = Xj,k,i +Difference Meanj,i (6)  

where X′
j,k,i indicates the updated value of Xj,k,i accept X′

j,k,i if it gives a 
better function value. At the completion of the teacher phase, all 
approved function values are retained, and these values are the learner 
phase’s input. The values of ri and TF influence the TLBO algorithm’s 
performance. ri is a random value from 0 to 1 and TF represents the 
teaching factor. Nevertheless, the ri and TF values are obtained 
randomly, and these variables do not supply input. Therefore, the 
adjustment of ri and TF is not needed in the algorithm. For its operation, 
TLBO needs the adjustment of the general control variables, such as 
population size and frequency of generations. These variables are 
necessary for the process of all population-based algorithms. TLBO can 
be referred to as a parameter-less algorithm specific to an algorithm. 

Learner phase. Student-to-student interaction is used to model the 
learning process in this algorithm phase, which models the students (or 
learners) learning. Discussions and interactions with other students can 

Fig. 8. Accuracy results of testing dataset for different proposed TLBOMLP structure.  
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help them learn new things. When the other learners possess additional 
knowledge, then the learner will learn novel content. Following is an 
expression of the learning process that occurred during this phase. 
Randomly select two learners, Q, and P, such that X′

total− P,i ∕= X′

total− Q,i, 
where, X′

total− P,i and X′

total− Q,i are the updated values of X′

total− P,i and 
X′

total− Q,i, respectively, at the end of the teacher phase. 

X′′
j,P,i = X ′

j,P,i + ri

(
X ′

j,P,i − X′

j,Q,i

)
ifX ′

total− P,i > X ′

total− Q,i (7)  

X′′
j,P,i = X ′

j,P,i + ri

(
X ′

j,Q,i − X ′

j,P,i

)
ifX ′

total− Q,i > X′

total− P,i (8) 

Accept X′′
j,P,i if it gives a better function value. 

Results and discussion 

The overall thermal transmission coefficient of the heat exchanger 
can be predicted using a conjunction of the ANN and two optimization 
approaches [67]. Randomly, the data are split into two groups, the 
training, and the testing set, each containing 80 % and 20 % of the total 
data. Each suggested optimizer is run for five hundred iterations, and ten 
different population sizes are evaluated. To complete the prediction, the 
appropriate population is selected. This population has the minimum 
RMSE and the largest quantity of R2. Table 3 presents the R2 and RMSE 

values for the BBO-MLP method under ten population sizes (50, 100, 
150, 200, 250, 300, 350, 400, 450, and 500) for each training and tes-
ting data subset. These values are applicable to both sets of data. Ac-
cording to what can be shown, the population size of 500 yields the 
optimum results for the BBO-MLP approach. There are ten different 
population sizes; therefore, the score ranges from one to ten, with one 
being awarded to the population size with the highest score possible and 
ten being given to the population size with the lowest score possible. It is 
essential to highlight that R2 ought to be higher, whereas RMSE needs to 
be lower for the ideal condition. In other terms, the lowest RMSE and 
highest R2 values receive the highest score. Fig. 4 illustrates the value of 
the RMSE for each of the ten different population sizes. 

As determined by the BBO method, Figs. 5 and 6 indicate a com-
parison of the anticipated and actual values of each population size. 
Training and testing stages have RMSE values of 0.01122 and 0.06112, 
respectively, for this model. Additionally, concerning the testing and the 
training phases, the R2 for BBO-MLP are 0.95175 and 0.9943, 
respectively. 

Table 4 contains a tabulation of the R2 and RMSE under ten popu-
lation sizes for the TLBO-MLP instance. During the course of testing, the 
population sizes of 400 and 50 correspond to those with minimal and 
maximal errors. In conclusion, the population size of 400 is associated 
with the greatest performance in the training and the testing data 
specimens. Figs. 7 and 8, regarding the training and testing data 

Fig. 8. (continued). 
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specimens, compare the modeled and predicted population size values 
for all population sizes. 

Table 3 displays the RMSE and R2 values for the BBO-MLP approach 
when applied to various population sizes. Accordingly, the population 
size of 500 has the minimum RMSE in training and testing procedures. 
When looking at the RSME and R2 and in the train and test stages, this 
approach achieves its highest level of performance with a population 
size of 500. This is true regardless of the data set. Figures 13 and 14 
present a graphical representation of the comparisons between the 
modeled and anticipated values. 

Table 4 represents the RMSE and R2 values associated with the TLBO 
approach for both the training and testing sets. Among all population 
sizes, the 400-person population displays the maximum efficiency. 
Compared to the other techniques, the TLBO method achieves its highest 
performance with the smallest possible population size. In addition, 
when it came to forecasting the overall heat loss, the BBO algorithm is 
the one that performs the least well. 

This section compares the outputs (the anticipated heat loss) with the 

target values (the measured heat loss) in order to appraise the perfor-
mance of the BBO-MLP and TLBO-MLP models. Figs. 9 and 10 illustrate 
the results of the training and testing datasets and the difference be-
tween each set of heat loss (output and target). For the training data 
samples, BBO-MLP and TLBO-MLP have MAE values of (0.0076668 and 
0.007674), and RMSE values of (0.00012732 and 0.010132), and the 
testing data samples have the MAE values of (0.03232 and 0.026233), 
and RMSE values of (0.0045911 and 0.056967), respectively. For the 
training phase, the acquired error values are within the range of 
[-0.0006078, 0.01133] and [-0.00040708, 0.010181] for the pre-
dictions of the BBO-MLP and TLBO-ANFIS for the best fit, respectively. 
Also, the testing errors are within the [0.0004724, 0.068666] and 
[0.0021984, 0.057688] range for the BBO-MLP and TLBO-MLP 
methods, respectively. The TLBO-MLP’s lowest amount of errors dem-
onstrates how well this model predicts heat loss. Before this, other 
studies have been conducted in this field, and more studies are needed to 
be able to suggest the use of ANN methods in predicting heat loss. To 
increase the precision of calculating the heat loss of buildings and 

Fig. 9. The error and frequency of MAE for the best fit BBOMLP proposed model.  
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explicitly integrating them with optimization algorithms, further study 
is required. Table 5 indicates the previous research in the energy field. 

Conclusions 

In order to optimize a building’s energy efficiency and achieve en-
ergy conservation and environmental impact reduction, it is important 
to forecast how much energy it will need. This study uses a mathematical 
simulation to determine the overall thermal transmission (heat loss) and 

create a database for ANN application. The MLP neural network was 
integrated with two hybrid algorithms (BBO and TLBO) to reduce errors 
and improve ANN performance. An agent (i.e., a technique with a lower 
RMSE, higher R2, and lower MAE) is chosen for each optimizer tech-
nique, separated into ten populations. To determine which approach is 
the most accurate, several agents of techniques were ultimately 
compared to one another. The TLBO provides superior outcomes in this 
particular scenario among the two methods due to its low error values 
and higher R2 values. The population size of 400 provides the optimal 

Fig. 9. (continued). 

Fig. 10. The error and frequency of MAE for the best fit TLBOMLP proposed model.  
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performance for the TLBO. The suggested model’s output is calculated 
using RMSE of 0.01012 and 0.05216 in the training and testing phases. 
The BBO algorithm is the approach that was less accurate for calculating 
the overall thermal transmission coefficient. It exhibits an RMSE of 
0.01122 for the training data and 0.06112 for the testing data. Also, 
according to the training error ranges of [-0.0006078, 0.01133] and 
[-0.00040708, 0.010181] and testing error ranges of [0.0004724, 
0.068666] and [0.0021984, 0.057688] for BBO-MLP and TLBO-MLP, 
respectively, shows that the TLBO-MLP reaches the lower range of 
error and can predict the heat loss with higher accuracy. 
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