Show simple item record

dc.creatorObredor Baldovino, Thalia Patricia
dc.creatorBarcasnegras Moreno, Evis Alberto
dc.creatorMercado Caruso, Nohora Nubia
dc.creatorSalas Navarro, Katherinne Paola
dc.date.accessioned2018-11-15T18:03:48Z
dc.date.available2018-11-15T18:03:48Z
dc.date.issued2018-07-12
dc.identifier.issn02196867
dc.identifier.urihttp://hdl.handle.net/11323/1041
dc.description.abstractThis paper deals with a mathematical model for reduction of the lack of coverage (LC) involving multiple coverage in presence of partial covering. The model proposes a new structure of assignment of facilities in a facility location system to cover in greater proportion of the demand territory, avoiding assignment of several facilities in the same space of the territory. A comparison between the engendered solution and its representation is carried out through known indicators to measure the improvement of the solution. The results of our proposed model are contrast and better compared to defined referred models in order to evaluate the reduction of LC.spa
dc.language.isoengeng
dc.publisherJournal of Advanced Manufacturing Systemseng
dc.rightsAtribución – No comercial – Compartir igualeng
dc.subjectFacility Locationeng
dc.subjectInteger Programmingeng
dc.subjectLack Of Coverage Reductioneng
dc.subjectMultiple Coverageeng
dc.titleCoverage reduction: a mathematical modeleng
dc.typeArticleeng
dcterms.references1. G. Alexandris and I. Giannikos, A new model for maximal coverage exploiting GIS capabilities, Eur. J. Oper. Res. 202(2) (2010) 328–338. 2. A. Basar, B. Catay and T. Unluyurt, A multi-period double coverage approach for locating the emergency medical service stations in Istanbul, Oper. Res. Soc. 62(4) (2011) 627–637. 3. O. Berman and D. Krass, The generalized maximal covering location problem, Comput. Oper. Res. 29(6) (2002) 563–581. 4. O. Berman, D. Krass and Z. Drezner, The gradual covering decay location problem on a network, Eur. J. Oper. Res. 151(3) (2003) 474–480. 5. O. Berman, D. Krass, Z. Drezner and G. Wesolowsky, The variable radius covering problem, Eur. J. Oper. Res. 196 (2009) 516–525. 6. O. Berman and J. Wang, The minmax regret gradual covering location problem on a network with incomplete information of demand weights, Eur. J. Oper. Res. 208 (2011) 233–238. 7. S. Cespedes and C. Amaya, Localizacion y relocalizacion de ambulancias del centro regulador de urgencias y emergencias de Bogota, Thesis, Universidad de los Andes, Bogota, Colombia (2008). 8. R. Church, The maximal covering location problem, Reg. Sci. 32 (1974) 101–118. 9. R. Church, The planar maximal covering location problem, Reg. Sci. 24 (1984) 185–201. 10. M. Daskin, A maximum expected covering location model: Formulation, properties and heuristic solution, Transport. Sci. 17(1) (1983) 48–70. 11. S. Davari, M. Zarandi and B. Turksen, A greedy variable neighborhood search heuristic for the maximal covering location problem with fuzzy coverage radii, Knowl.-Based Syst. 41 (2013) 68–76. 12. E. Erdemir, R. Batta, S. Spielman, P. Rogerson, A. Blatt and M. Flanigan, Location coverage models with demand originating from nodes and paths: Application to cellular network design, Eur. J. Oper. Res. 190(3) (2008) 610–632. 13. M. Gendreau, G. Laporte and F. Semet, Solving an ambulance location model by Tabu Search, Location Sci. 5(2) (1997) 75–88. 14. R. Ghasemiyeh, R. Moghdani and S. S. Sana, A hybrid arti¯cial neural network with metaheuristic algorithms for predicting stock price, Cybernet. Syst., Int. J. 48(4) (2017) 365–392. 15. R. Guerra-Olivares, N. R. Smith, R. G. Gonzalez-Ramírez, E. G. Mendoza and L. E. Cardenas-Barron, A heuristic procedure for the outbound container space assignment problem for small and midsize maritime terminals, Int. J. Mach. Learn. Cybernet. (2017) 1–14. 16. H. Jia, F. Ordoñez and M. Dessouky, Solution approaches for facility location of medical supplies for large-scale emergencies, Comput. Indus. Eng. 52(2) (2007) 257–276. 17. O. Karasakal and E. Karasakal, A maximal covering location model in the presence of partial coverage, Comput. Oper. Res. 31(9) (2004) 1515–1526. 18. G. Lee and A. Murray, Maximal covering with network survivability requirements in wireless mesh networks, Comput. Environ. Urban Syst. 34(1) (2010) 49–57. 19. G. Moore, The hierarchical service location problem, Manage. Sci. 28(7) (1982) 775–780. 20. A. F. Muñoz-Villamizar, J. R. Montoya-Torres and N. Herazo-Padilla, Mathematical programming modeling and resolution of the location-routing problem in urban logistics, Ingenier{a y Universidad 18(2) (2014) 271–289, http://dx.doi.org/10.11144/Javeriana. IYU18-2.mpmr. 21. C. Revelle and K. Hogan, The maximum availability location problem, Transport. Sci. 23(3) (1989) 192–200. 22. S. S. Sana, G. Herrera-Vidal and J. A. Chedid, Collaborative model on the agro-industrial supply chain of Cocoa, Cybernet. Syst., Int. J. 48(4) (2017) 325–347. 23. B. Sarkar and A. Majumder, A study on three di®erent dimensional facility location problems, Econ. Model. 30 (2013) 879–887. 24. B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Appl. Math. Model. 37(5) (2013) 3138–3151 25. B. Sarkar, B. Ganguly, M. Sarkar and S. Pareek, E®ect of variable transportation and carbon emission in a three-echelon supply chain model, Transport. Res. E, Log. Transport. Rev. 91 (2016) 112–128. 26. B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for ¯xed lifetime products, Math. Problem Eng. 2016 (2016) 6318737. 27. B. Sarkar, M. Ullah and N. Kim, Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items, Comput. Indus. Eng. 111 (2017) 148–163. 28. N. H. Shah and H. Soni, Periodic review inventory model with service level constraint in fuzzy environment, Int. J. Appl. Dec. Sci. 4(2) (2011) 129–147. 29. M. Valipour, Number of required observation data for rainfall forecasting according to the climate conditions, Am. J. Sci. Res. 74 (2012) 79–86. 30. M. Valipour, Increasing irrigation e±ciency by management strategies: Cutback and surge irrigation, ARPN J. Agricultural Biol. Sci. 8(1) (2013) 35–43. 31. M. Valipour, Study of di®erent climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations, Arch. Agronomy Soil Sci. 61(5) (2015) 679–694. 32. M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms, Meteorol. Appl. 23 (2016) 91–100. 33. M. Valipour, Global experience on irrigation management under di®erent scenarios, J. Water Land Develop. 32(I–III) (2017) 95–102. 34. H. Younies and G. Wesolowsky, A mixed integer formulation for maximal covering by inclined parallelograms, Eur. J. Oper. Res. 159(1) (2004) 83–94. 35. M. Zarandi, S. Davari and S. Sisakht, The large-scale dynamic maximal covering location problem, Math. Comput. Model. 57(3–4) (2013) 710–719.spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record