• Index page
  • Información de interés
  • Login
  • Communities & Collections
  • Language
    Englishespañolportuguês (Brasil)
View Item 
  •   Redicuc Home
  • Tesis Doctorales y Trabajos de Grado
  • Pregrado
  • View Item
  •   Redicuc Home
  • Tesis Doctorales y Trabajos de Grado
  • Pregrado
  • View Item
Universidad de la Costa, CUC. Calle 58 # 55 - 66. Barranquilla, Colombia. 336 22 00. repositorioredicuc@cuc.edu.co. Corporación Universidad de la Costa.

Pronostico del crecimiento de demanda de energía eléctrica en el área caribe colombiana para proyectar la generación por seguridad de 2018 a 2032

Thumbnail
View/Open
Trabajo de grado (3.372Mb)
Date
2018-04-09
Author
Cervantes Bolívar, Brian
Metadata
Show full item record
BASE GoogleScholar
Compartir:


Impacto

URI: http://hdl.handle.net/11323/1058

Abstract

Los modelos de estimación de demanda son utilizados por organismos encargados de la planeación energética, cuya función objetivo está centrada en garantizar el suministro de usuarios a partir de los recursos disponibles en generación, transporte e interconexión. Típicamente los modelos de planificación a largo plazo utilizan técnicas de optimización no lineal considerando un error no superior al 5%. El modelo de referencia utilizado por la UPME en Colombia alcanza un error medio del 1.6%. No obstante, los modelos no lineales presentan restricciones para anticipar variaciones no características de las curvas de comportamiento, lo cual aumenta la probabilidad de una predicción errónea. Basado en lo anterior, la presente investigación propone un modelo de proyección de demanda de energía eléctrica utilizando redes neuronales que permita planear y responder al crecimiento del sistema. El estudio comienza documentando las metodologías actuales para el pronóstico de demanda de potencia máxima, así como las deficiencias actuales en los pronósticos utilizados. Como resultado se obtiene un nuevo modelo con la aplicación de redes neuronales utilizando el algoritmo Cascade-Forward Back Propagation en el software MATLAB R2017a. Se consideró como caso de estudio el Área Caribe del Sistema Interconectado Nacional (SIN) colombiano, los resultados obtenidos son exportados al software DigSILENT Power Factory 15.1.para someter el caso de estudio a prueba. Durante el proceso de comparación del modelo, se identificó que los datos obtenidos reflejan las características de comportamiento de la demanda con un margen de error aceptable igual al 0.5% comparados con los modelos de referencia utilizados. Finalmente se proponen recomendaciones técnicas y operativas para garantizar la seguridad en la operación del Área Caribe.
 
Demand estimation models are used by organizations which are in charge of energy planning. Their primary function is focused on guaranteeing the supply of users from the available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error of no more than 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6%. Non-linear models, however, are constrained in their ability to anticipate uncharacteristic variations in behavioral curves, which increases the probability of an erroneous prediction. Therefore on the above, this research proposes a model for forecasting the demand of electricity by using neural networks to plan for and respond to non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation in the software MATLAB R2017a. The Caribbean Area of the Colombian National Interconnected System (SIN) was considered as a case study. The results obtained are exported to the software DigSILENT Power Factory 15.1 to identify possible technical restrictions and propose improvements. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin of error equal to 0.5%.
 
Collections
  • Pregrado

Browse

All of RedicucCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Compartir en

Universidad de la Costa, CUC

  • Calle 58 # 55 - 66. Barranquilla, Colombia

  • 336 22 00

  • repositorioredicuc@cuc.edu.co

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Enlaces institucionales:

  • Universidad de la Costa
  • Biblioteca
  • Catálogo bibliográfico
  • Recuperador Primo

Universidad de la Costa CUC.
Politica de Protección de Datos.