Mostrar el registro sencillo del ítem

dc.contributor.authorCardenas Escorcia, Yulineth del Carmenspa
dc.contributor.authorValencia Ochoa, Guillermo Eliecerspa
dc.contributor.authorDuarte Forero, Jorgespa
dc.date.accessioned2018-11-20T19:23:56Z
dc.date.available2018-11-20T19:23:56Z
dc.date.issued2018
dc.identifier.isbn978-88-95608- 62-4spa
dc.identifier.issn2283-9216spa
dc.identifier.urihttp://hdl.handle.net/11323/1469spa
dc.description.abstractStudies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the enginespa
dc.language.isoeng
dc.publisherItalian Association of Chemical Engineering - AIDICspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectBiomasseng
dc.subjectInternal combustion engineseng
dc.subjectNatural gaseng
dc.subjectIgnitioneng
dc.titleCharacterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomasseng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAmador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 197 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem