Mostrar el registro sencillo del ítem

dc.contributor.authorSosa, Germán Dspa
dc.contributor.authorVelásquez Clavijo, Fabiánspa
dc.date.accessioned2018-11-20T23:36:40Z
dc.date.available2018-11-20T23:36:40Z
dc.date.issued2015-01-05
dc.identifier.citationSosa Ramírez, G., & Velásquez Clavijo, F. (2015). Aplicación de Técnicas de Clustering en Sonidos Adventicios para Mejorar la Interpretabilidad y Detección de Estertores. INGE CUC, 11(1), 53-62. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/366spa
dc.identifier.issn0122-6517, 2382-4700 electrónicospa
dc.identifier.urihttp://hdl.handle.net/11323/1564spa
dc.description.abstractDue to the subjectivity involved currently in pulmonary auscultation process and its diagnostic to evaluate the condition of respiratory airways, this work pretends to evaluate the performance of clustering algorithms such as k-means and DBSCAN to perform a computational analysis of lung sounds aiming to visualize a representation of such sounds that highlights the presence of crackles and the energy associated with them. In order to achieve that goal, Wavelet analysis techniques were used in contrast to traditional frequency analysis given the similarity between the typical waveform for a crackle and the wavelet sym4. Once the lung sound signal with isolated crackles is obtained, the clustering process groups crackles in regions of high density and provides visualization that might be useful for the diagnostic made by an expert. Evaluation suggests that k-means groups crackle more effective than DBSCAN in terms of generated clusters.eng
dc.description.abstractDebido a la subjetividad que involucra actualmente el proceso de auscultación pulmonar y su diagnóstico para evaluar la condición de las vías respiratorias de un paciente, este trabajo busca evaluar el desempeño de los algoritmos de clustering: k-means y DBSCAN para efectuar un análisis computacional de sonidos pulmonares con el objetivo de visualizar una representación de dichos sonidos que exalte la presencia de estertores y la energía contenida en ellos. Para este fin, se emplearon técnicas de descomposición y análisis Wavelet a diferencia del tradicional análisis en frecuencia dada la similitud entre la forma de onda de un estertor típico y la wavelet sym4. Obtenida la señal de sonido pulmonar con estertores aislados, el proceso de clustering agrupa estertores en regiones de alta presencia y ofrece una visualización que puede ser de utilidad para el diagnóstico hecho por un experto. La evaluación hecha sugiere que k-means agrupa conjuntos de estertores de forma más efectiva que DBSCAN en términos de clusters generados.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 11, Núm. 1 (2015)spa
dc.sourceINGE CUCspa
dc.subjectSonido Pulmonareng
dc.subjectEstertoreseng
dc.subjectSonidos Vesiculareseng
dc.subjectSonidos Adventicioseng
dc.subjectTransformada Waveleteng
dc.subjectDescomposición Waveleteng
dc.subjectsymleteng
dc.subjectClusteringeng
dc.subjectk-meanseng
dc.subjectDBSCANeng
dc.subjectlog-ennergyeng
dc.subjectPulmonary soundeng
dc.subjectRaleseng
dc.subjectVesicular soundseng
dc.subjectAdventitious Sounds  eng
dc.subjectWavelet Transformeng
dc.subjectWavelet decompositioneng
dc.titleAplicación de técnicas de clustering en sonidos adventicios para mejorar la interpretabilidad y detección de estertoreseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/ingecuc.11.1.2015.05spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/366spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/ingecuc.11.1.2015.05spa
dc.identifier.eissn2382-4700spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn0122-6517spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.references[1] W. H. Organization et al., “The top 10 causes of death: The 10 leading causes of death in the world, 2000 and 2011,” 2013.spa
dc.relation.references[2] M. Munakata, H. Ukita, I. Doi, Y. Ohtsuka, Y. Masaki, Y. Homma, and Y. Kawakami, “Spectral and waveform characteristics of fine and coarse crackles.” Thorax, vol. 46, no. 9, pp. 651–657, 1991. DOI:10.1136/thx.46.9.651spa
dc.relation.references[3] M. Yeginer and Y. P. Kahya, “Elimination of vesicular sounds from pulmonary crackle waveforms,” Computer methods and programs in biomedicine, vol. 89, no. 1, pp. 1–13, 2008. DOI:10.1016/j.cmpb.2007.10.002spa
dc.relation.references[4] T. Kaisia, A. Sovijarvi, P. Piirila, H. Rajala, S. Haltsonen, and T. Rosqvist, “Validated method for automatic detection of lung sound crackles,” Medical and Biological Engineering and Computing, vol. 29, no. 5, pp. 517–521, 1991. DOI:10.1007/BF02442324spa
dc.relation.references[5] M. Yeginer and Y. P. Kahya, “Probing the existence of medium pulmonary crackles via model-based clustering,” Computers in biology and medicine, vol. 40, no. 9, pp. 765–774, 2010. DOI:10.1016/j.compbiomed.2010.07.004spa
dc.relation.references[6] M. Paoletti, G. Camiciottoli, E. Meoni, F. Bigazzi, L. Cestelli, M. Pistolesi, and C. Marchesi, “Explorative data analysis techniques and unsupervised clustering methods to support clinical assessment of chronic obstructive pulmonary disease (COPD) phenotypes,” Journal of biomedical informatics, vol. 42, no. 6, pp. 1013–1021, 2009. DOI:10.1016/j.jbi.2009.05.008spa
dc.relation.references[7] X. Lu and M. Bahoura, “An automatic system for crackles detection and classification,” in Electrical and Computer Engineering, 2006. CCECE’06. Canadian Conference. IEEE, 2006, pp. 725–729. DOI:10.1109/CCECE.2006.277698spa
dc.relation.references[8] M. Bahoura and X. Lu, “Separation of crackles from vesicular sounds using wavelet packet transform,” in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference, vol. 2. IEEE, 2006, pp. II–II. DOI:10.1109/ICASSP.2006.1660533spa
dc.relation.references[9] L. J. Hadjileontiadis and S. M. Panas, “Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter,” Biomedical Engineering, IEEE Transactions on, vol. 44, no. 12, pp. 1269–1281, 1997. DOI:10.1109/10.649999spa
dc.relation.references[10] S. Mallat, A wavelet tour of signal processing. Academic Press, 1999.spa
dc.relation.references[11] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J Mach Learn Res, vol. 12, pp. 2825–2830, 2011.spa
dc.relation.references[12] E. Alpaydin, Introduction to machine learning. MIT press, 2004.spa
dc.relation.references[13] J. J. Ward, “Rale lung sounds 3.1 professional edition,” Respiratory Care, vol. 50, no. 10, pp. 1385–1388, 2005.spa
dc.relation.references[14] D. Mazzoni, M. Brubeck, and J. Haberman, “Audacity: Free audio editor and recorder”. [En línea] Disponible en: http://audacity.sourceforge.net, 2005.spa
dc.title.translatedApplication of clustering techniques for lung sounds to improve interpretability and detection of crackleseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationissue1spa
dc.relation.citationvolume11spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevINGE CUCspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem