• español
    • English
    • português (Brasil)
  • English 
    • español
    • English
    • português (Brasil)
  • Login

Repositorio CUC

  • Inicio
  • Colecciones
  • Navegar
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Biblioteca
  • Información de interés
  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • Tesis Doctorales y Trabajos de Grado
  • Posgrado
  • View Item
  •   DSpace Home
  • Tesis Doctorales y Trabajos de Grado
  • Posgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgramThis CollectionBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgram

My Account

LoginRegister

Statistics

View Usage Statistics

ESTUDIO COMPARATIVO DE TÉCNICAS DE ENTRENAMIENTO Y CLASIFICACIÓN EN SISTEMAS DE DETECCIÓN DE INSTRUSOS (IDS), BASADOS EN ANOMALIAS DE RED.


IBAÑEZ, KEVIN

Trabajo de grado - Pregrado

2016-12-14

Maestría en Ingeniería (Énfasis en Redes y Software)

Dataset DARPA NSL-KDDBuscar en Repositorio UMECIT
Sistema de Detección de IntrusionesBuscar en Repositorio UMECIT
IDSBuscar en Repositorio UMECIT
Técnicas de entrenamiento y clasificaciónBuscar en Repositorio UMECIT
Técnicas de selección de característicasBuscar en Repositorio UMECIT

The main motivation of this investigation was the implementation of the Draper method applied to intrusion detection systems in different training and classification techniques in order to identify the best intrusion detection model with the objective of improving detection rates of attacks in computer network systems, using a procedure of selection of characteristics and different methods of algorithms of unsupervised trainings, in this case was used the technique INFO.GAIN identifying that the number of optimal characteristics is 15. Consequently, a neural network using a non-supervised learning algorithm (GHSOM, RANDOM FOREST, BAYESIAN NETWORKS, NAIVE BAYES, C4.5, LOGISTIC, PART AND NBTREE) for the purpose of classifying bi-class traffic automatically. obtained the best technique of training and classification using the selection technique In INFO.GAIN with 15 characteristics and cross validation 10 pligues, was the RANDOM FOREST technique.
 
La principal motivación de esta investigación ha sido la implementación del método Draper aplicado a los sistemas de detección de intrusos en distintas técnicas de entrenamiento y clasificación con el propósito de identificar el mejor modelo de detección de intrusiones con el objetivo de mejorar las tasas de detección de ataques en sistemas de redes computacionales, utilizando un procedimiento de selección de características y distintos métodos de algoritmos de entrenamientos no supervisados, en este caso se utilizó la técnica INFO.GAIN identificando que el número de características óptimo es 15. En consecuencia, se entrenó una red neuronal que utilizan un algoritmo de aprendizaje no supervisado (GHSOM, RANDOM FOREST, REDES BAYESIANAS, NAIVE BAYES, C4.5,LOGISTIC, PART Y NBTREE ), con el propósito de clasificar el tráfico bi-clase de forma automática, Como resultado se obtuvo que la mejor técnica de entrenamiento y clasificación utilizando la técnica de selección INFO.GAIN a 15 características y validación cruzada 10 pligues, fue la técnica RANDOM FOREST.
 

http://hdl.handle.net/11323/170

  • Posgrado [949]

Descripción: 72290579.pdf
Título: 72290579.pdf
Tamaño: 1.413Mb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

HORARIOS DE ATENCIÓN AL USUARIO

LUNES A VIERNES 7:00 a.m a 7:00 p.m

SABADOS: 8:00 a.m a 6:00 p.m

DOMINGOS Y FESTIVOS NO HAY ATENCIÓN


Ubicados en el Bloque 2, Piso 1 y 2

Logo CUC

Contacto

Correo: biblioteca@cuc.edu.co

Telefono: 3362248

Barranquilla, Colombia

Calle 58 # 55-66 Barrio Modelo


Accesos


  • Bases de datos
  • Investigación
  • PQR
  • Catálogo bibliográfico
  • Publish or perish
  • Booklick
  • Libby
Todos los derechos reservados.

Sistema DSPACE - Metabiblioteca | logo