• Index page
  • Información de interés
  • Login
  • Communities & Collections
  • Language
    Englishespañolportuguês (Brasil)
View Item 
  •   Redicuc Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
  •   Redicuc Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
Universidad de la Costa, CUC. Calle 58 # 55 - 66. Barranquilla, Colombia. 336 22 00. repositorioredicuc@cuc.edu.co. Corporación Universidad de la Costa.

Affective recognition from EEG signals: an integrated data-mining approach

Thumbnail
View/Open
Affective recognition from EEG signals.pdf (102.7Kb)
Date
2018
Author
Mendoza Palechor, Fabio Enrique
Recena Menezes, Maria Luiza
Sant’anna, Anita
Ortiz Barrios, Miguel Angel
Samara, Anas
Galway, Leo
Metadata
Show full item record
BASE GoogleScholar
Compartir:


Impacto

URI: http://hdl.handle.net/11323/1747
Citar con DOI: https://doi.org/10.1007/s12652-018-1065-z

Abstract

Emotions play an important role in human communication, interaction, and decision making processes. Therefore, considerable efforts have been made towards the automatic identification of human emotions, in particular electroencephalogram (EEG) signals and Data Mining (DM) techniques have been then used to create models recognizing the affective states of users. However, most previous works have used clinical grade EEG systems with at least 32 electrodes. These systems are expensive and cumbersome, and therefore unsuitable for usage during normal daily activities. Smaller EEG headsets such as the Emotiv are now available and can be used during daily activities. This paper investigates the accuracy and applicability of previous affective recognition methods on data collected with an Emotiv headset while participants used a personal computer to fulfill several tasks. Several features were extracted from four channels only (AF3, AF4, F3 and F4 in accordance with the 10–20 system). Both Support Vector Machine and Naïve Bayes were used for emotion classification. Results demonstrate that such methods can be used to accurately detect emotions using a small EEG headset during a normal daily activity.
Collections
  • Artículos científicos

Browse

All of RedicucCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPrint ISSNElectronic ISSNThis CollectionBy Issue DateAuthorsTitlesSubjectsPrint ISSNElectronic ISSN

My Account

Login

Compartir en

Universidad de la Costa, CUC

  • Calle 58 # 55 - 66. Barranquilla, Colombia

  • 336 22 00

  • repositorioredicuc@cuc.edu.co

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Enlaces institucionales:

  • Universidad de la Costa
  • Biblioteca
  • Catálogo bibliográfico
  • Recuperador Primo

Universidad de la Costa CUC.
Politica de Protección de Datos.