• español
    • English
    • português (Brasil)
  • English 
    • español
    • English
    • português (Brasil)
  • Login

Repositorio CUC

  • Inicio
  • Colecciones
  • Navegar
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Biblioteca
  • Información de interés
  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
  •   DSpace Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgramThis CollectionBy Issue DateAuthorsTitlesSubjectsPrint ISSNResource TypeElectronic ISSNProgram

My Account

LoginRegister

Statistics

View Usage Statistics

Affective recognition from EEG signals: an integrated data-mining approach


Mendoza Palechor, Fabio Enrique
Recena Menezes, Maria Luiza
Sant’anna, Anita
Ortiz Barrios, Miguel Angel
Samara, Anas
Galway, Leo

Artículo de revista

2018

Journal of Ambient Intelligence and Humanized Computing

https://doi.org/https://doi.org/10.1007/s12652-018-1065-z

18685137

Affective computingBuscar en Repositorio UMECIT
Affective recognitionBuscar en Repositorio UMECIT
Data Mining (DM)Buscar en Repositorio UMECIT
Electroencephalogram (EEG)Buscar en Repositorio UMECIT
Statistical featuresBuscar en Repositorio UMECIT

Emotions play an important role in human communication, interaction, and decision making processes. Therefore, considerable efforts have been made towards the automatic identification of human emotions, in particular electroencephalogram (EEG) signals and Data Mining (DM) techniques have been then used to create models recognizing the affective states of users. However, most previous works have used clinical grade EEG systems with at least 32 electrodes. These systems are expensive and cumbersome, and therefore unsuitable for usage during normal daily activities. Smaller EEG headsets such as the Emotiv are now available and can be used during daily activities. This paper investigates the accuracy and applicability of previous affective recognition methods on data collected with an Emotiv headset while participants used a personal computer to fulfill several tasks. Several features were extracted from four channels only (AF3, AF4, F3 and F4 in accordance with the 10–20 system). Both Support Vector Machine and Naïve Bayes were used for emotion classification. Results demonstrate that such methods can be used to accurately detect emotions using a small EEG headset during a normal daily activity.

http://hdl.handle.net/11323/1747

  • Artículos científicos [2641]

Descripción: Affective recognition from EEG signals.pdf
Título: Affective recognition from EEG signals.pdf
Tamaño: 102.7Kb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

HORARIOS DE ATENCIÓN AL USUARIO

LUNES A VIERNES 7:00 a.m a 7:00 p.m

SABADOS: 8:00 a.m a 6:00 p.m

DOMINGOS Y FESTIVOS NO HAY ATENCIÓN


Ubicados en el Bloque 2, Piso 1 y 2

Logo CUC

Contacto

Correo: biblioteca@cuc.edu.co

Telefono: 3362248

Barranquilla, Colombia

Calle 58 # 55-66 Barrio Modelo


Accesos


  • Bases de datos
  • Investigación
  • PQR
  • Catálogo bibliográfico
  • Publish or perish
  • Booklick
  • Libby
Todos los derechos reservados.

Sistema DSPACE - Metabiblioteca | logo