• Index page
  • Información de interés
  • Login
  • Communities & Collections
  • Language
    Englishespañolportuguês (Brasil)
View Item 
  •   Redicuc Home
  • Producción científica y académica
  • Revistas Científicas
  • View Item
  •   Redicuc Home
  • Producción científica y académica
  • Revistas Científicas
  • View Item
Universidad de la Costa, CUC. Calle 58 # 55 - 66. Barranquilla, Colombia. 336 22 00. repositorioredicuc@cuc.edu.co. Corporación Universidad de la Costa.

Data leakage detection using dynamic data structure and classification techniques

Detección de fugas de información aplicando estructura de dinámica de datos y técnicas de clasificación


Thumbnail
View/Open
Data Leakage Detection Using Dynamic Data.pdf (834.9Kb)
Date
2015-01-05
Author
Guevara Maldonado, César Byron
Metadata
Show full item record
BASE GoogleScholar
Compartir:


Impacto

URI: http://hdl.handle.net/11323/1748

Abstract

Data leakage is a permanent problem in public and private institutions around the world; particularly, identifying the information leakage efficiently. In order to solve this problem, this paper poses an adaptable data structure based on human behavior using all the activities executed within the computer system. When applying this structure, the normal behavior is modeled for each user, so in this way, detects any abnormal behavior in real time. Moreover, this structure enables the application of several classification techniques such as decision trees (C4.5), UCS, and Naive Bayes, these techniques have proven efficient outcomes in intrusion detection. In the testing of this model, a scenario demonstrating the proposal’s effectiveness with real information from a government institution was designed so as to establish future lines of work.
 
La fuga de información es un problema que está presente en instituciones públicas y privadas alrededor del mundo. El principal problema que se presenta es identificar de forma eficiente el filtrado de la información. Para solucionar este problema en el presente trabajo desarrolla una estructura de datos adaptable al comportamiento humano, utilizando como base las actividades ejecutadas dentro del sistema informático. Al aplicar esta estructura se modela un comportamiento NORMAL de cada uno de los usuarios y de esta manera detecta cualquier comportamiento ANÓMALO en tiempo real. Además, permite la aplicación de varias técnicas de clasificación como los árboles de decisión (C4.5), UCS y Naive Bayes las cuales han demostrado un eficiente resultado en la detección de intrusiones. Para probar este modelo se ha diseñado un escenario que sirve para demostrar la validez de la propuesta con información real de una institución gubernamental y para acreditar líneas futuras de trabajo.
 
Para citar este documento con norma APA sexta edición utilice:
Guevara Maldonado, C. (2015). Detección de Fugas de Información Aplicando Estructura de Dinámica de Datos y Técnicas de Clasificación. INGE CUC, 11(1), 79-84. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/382

Collections
  • Revistas Científicas

Browse

All of RedicucCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Compartir en

Universidad de la Costa, CUC

  • Calle 58 # 55 - 66. Barranquilla, Colombia

  • 336 22 00

  • repositorioredicuc@cuc.edu.co

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Enlaces institucionales:

  • Universidad de la Costa
  • Biblioteca
  • Catálogo bibliográfico
  • Recuperador Primo

Universidad de la Costa CUC.
Politica de Protección de Datos.