dcterms.references | Ahmed, A. B. E. D., & Elaraby, I. S. (2014). Data
mining: A prediction for student's performance using
classification method. World Journal of Computer
Application and Technology, 2(2), 43-47
Angeli, C., Howard, S., Ma, J., Yang, J., & Kirschner,
P. (2017). Data mining in educational technology
classroom research: Can it make a contribution?.
Computers & Education, 113, 226-242.
Arantes, E., Stadler, A., Del Corso, J., & Catapan, A.
(2016). Contribuições da educação profissional na
modalidade a distância para a gestão e valorização
da diversidade. Espacios, 37(22), E-1.
Baker, R. S., & Siemens, G. (2014). Educational data
mining and learning analytics. In K. Sawyer (Ed.),
Cambridge handbook of the learning sciences (2nd
ed., pp. 253e274). NY: Cambridge University Press
Buja, A., & Lee, Y. S. (2001, August). Data mining
criteria for tree-based regression and classification.
In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery
and data mining (pp. 27e36). ACM
Chen, L. & Yang, Q. (2014). A group division method
based on collaborative learning elements. In The
26th Chinese Control and Decision Conference (pp.
1701-1705). Changsha.
Cho, Y. H., Yim, S. Y., & Paik, S. (2015). Physical
and social presence in 3D virtual role-play for preservice teachers. The Internet and Higher Education,
25, 70–77
Comas-Gonzalez, Z., Echeverri-Ocampo, I., ZamoraMusa, R., Velez, J., Sarmiento, R. and Orellana, M.
(2017). Tendencias recientes de la Educación Virtual
y su fuerte conexión con los Entornos Inmersivos.
Espacios, 38(15), p.4.
Freire, P., Dandolini, G., De Souza, J., Trierweiller, A.,
Da Silva, S., & Sell, D. et al. (2016). Universidade
Corporativa em Rede: Considerações Iniciais para
um Novo Modelo de Educação Corporativa.
Espacios, 37(5), E-5.
Gunasekara, R., Wijegunasekara, M., & Dias, N.
(2014). A Study on How to Improve the Perfomance
of k-mean Data Mining Algorithm in a Parallel
Environment. Journal Of Engineering And Applied
Sciences, 9(10), 441 - 446.
Kovács, P., Murray, N., Rozinaj, G., Sulema, Y., &
Rybárová, R. (2015). Application of immersive
technologies for education: State of the art. In 2015
International Conference on Interactive Mobile
Communication Technologies and Learning (IMCL)
(pp. 283 - 288). Thessaloniki.
Kumar Ameta, G., & Pathak, V. (2016). A Survey on
Improved Association Rule Mining for market based
analysis. International Journal Of Advances In
Computer Science And Technology, 5(12), 173-175.
Lin, W., Alvarez, S. A., & Ruiz, C. (2002). Efficient
adaptive-support association rule mining for
recommender systems. Data Mining and Knowledge
Discovery, 6(1), 83-105.
Lovkesh. (2016). Enhancing E-Learning Through
Data Mining in the Context of Education Data.
International Conference On Computing For
Sustainable Global Development (Indiacom) - IEEE,
109 - 113.
Marengo, A., Pagano, A., & Barbone, A. (2013). Data
mining methods to assess student behavior in
adaptive e-learning processes. Fourth International
Conference On E-Learning "Best Practices In
Management, Design And Development Of ECourses: Standards Of Excellence And Creativity" -
IEEE, 303 - 309.
Maqsood, A. (2017). Study of Big Data: An Industrial
Revolution Review of applications and challenges.
International Journal Of Advanced Trends In
Computer Science And Engineering, 6(3), 31-34.
Medvedev, V., Kurasova, O., Bernatavičienė, J.,
Treigys, P., Marcinkevičius, V., & Dzemyda, G.
(2017). A new web-based solution for modelling
data mining processes. Simulation Modelling
Practice And Theory, 76, 34-46.
Mendoza, F., De la Hoz, A., De la Hoz, E., & Ariza, P.
(2015). Feature selection, learning metrics and
dimension reduction in training and classification
processes in intrusion detection systems. Journal Of
Theoretical And Applied Information Technology,
82(2), 291 - 298.
Merceron, A., & Yacef, K. (2010). Measuring
correlation of strong symmetric assocation rules in
educational data. In C. Romero, S. Ventura, M.
Pechenizkiy, & R. S. J. D. Baker (Eds.), Handbook
of educational data mining (pp. 245e255). Boca
Raton: Taylor & Francis Group
Mohajer, A., Somarin, A., Yaghoobzadeh, M., &
Gudakahriz, S. (2016). A Method Based on Data
Mining for Detection of Intrusion in Distributed
Databases. Journal Of Engineering And Applied
Sciences, 11(7), 1493 - 1501.
Mustami, M., Suryadin and Suardi Wekke, I. (2017).
Learning Model Combined with Mind Maps and
Cooperative Strategies for Junior High School
Student. Journal of Engineering and Applied
Sciences, 12(7), pp.1681 - 1686.
Paez, H., Zabala, V. and Zamora, R. (2017). Análisis y
actualización del programa de la asignatura
Automatización Industrial en la formación
profesional de ingenieros electrónicos. Educación en
Ingeniería, 11(21), pp.39 - 44.
Peng, J., Tan, W., & Liu, G. (2015). Virtual
Experiment in Distance Education: Based on 3D
Virtual Learning Environment. In 2015 International
Conference of Educational Innovation through
Technology (EITT) (pp. 81-84). Wuhan.
Pollock, C. & Biles, J. (2016). Discovering the Lived
Experience of Students Learning in Immersive
Simulation. Clinical Simulation in Nursing, 12(8),
313-319.
Poorani, M., Nithya, P., & Umamaheshwari, B. (2014).
A Method for Mining Infrequent Causal
Associations with Swarm Intelligence Optimization
for Finding Adverse Drug Reaction. International
Journal Of Computing, Communications And
Networking, 3(1), 25-32.
Romero, C., & Ventura, S. (2012). Data mining in
education. Wiley Interdisciplinary Reviews: Data
Mining And Knowledge Discovery, 3(1), 12-27.
Tawil, N., Zaharim, A., Shaari, I., Ismail, N. and Embi,
M. (2012). The Acceptance of E-Learning in
Engineering Mathematics in Enhancing Engineering
Education. Journal of Engineering and Applied
Sciences, 7(3), pp.279-284.
Udupi, P., Sharma, N., & Jha, S. (2016). Educational
Data Mining and Big Data Framework for eLearning Environment. 5Th International
Conference On Reliability, Infocom Technologies
And Optimization (ICRITO) (Trends And Future
Directions) - IEEE, 258 - 261.
Zamora-Musa, R. and Villa, J. (2013). Estudio de la
alternativa de ambientes virtuales colaborativos
como herramienta de apoyo a laboratorios teleoperados en ingeniería. WEEF – World Engineering
Education Forum.
Zamora, R., Velez, J. and Villa, J. (2016).
Contributions of Collaborative and Immersive
Environments in Development a Remote Access
Laboratory: From Point of View of Effectiveness in
Learning. In: F. Mendes Neto, R. de Souza and A.
Sandro Gomes, ed., Handbook of Research on 3-D
Virtual Environments and Hypermedia for
Ubiquitous Learning, 1st ed. Pennsylvania: IGIGlobal, pp.1-28.
Zamora-Musa, R., Velez, J., Paez-Logreira, H., Coba,
J., Cano-Cano, C. and Martinez, O. (2017).
Implementación de un recurso educativo abierto a
través del modelo del diseño universal para el
aprendizaje teniendo en cuenta evaluación de
competencias y las necesidades individuales de los
estudiantes. Espacios, 38(5), p.3. | spa |