• Index page
  • Información de interés
  • Login
  • Communities & Collections
  • Language
    Englishespañolportuguês (Brasil)
View Item 
  •   Redicuc Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
  •   Redicuc Home
  • Producción científica y académica
  • Artículos científicos
  • View Item
Universidad de la Costa, CUC. Calle 58 # 55 - 66. Barranquilla, Colombia. 336 22 00. repositorioredicuc@cuc.edu.co. Corporación Universidad de la Costa.

Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system

Thumbnail
View/Open
Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system (175.8Kb)
Date
2018
Author
Silva Ortega, Jorge Ivan
Isaac Millan, Idi A.
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Metadata
Show full item record
BASE GoogleScholar
Compartir:


Impacto

URI: http://hdl.handle.net/11323/1837
Citar con DOI: DOI: 10.3303/CET1867132

Abstract

Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%.
Collections
  • Artículos científicos

Browse

All of RedicucCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Compartir en

Universidad de la Costa, CUC

  • Calle 58 # 55 - 66. Barranquilla, Colombia

  • 336 22 00

  • repositorioredicuc@cuc.edu.co

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Enlaces institucionales:

  • Universidad de la Costa
  • Biblioteca
  • Catálogo bibliográfico
  • Recuperador Primo

Universidad de la Costa CUC.
Politica de Protección de Datos.