Show simple item record


dc.creatorDi Mauro, Guillermo F
dc.creatorFerreyra, Rubén
dc.creatorSuárez, Juan A
dc.creatorJurado, Alejandro D
dc.date.accessioned2018-11-26T16:01:33Z
dc.date.available2018-11-26T16:01:33Z
dc.date.issued2015-01-05
dc.identifier.citationdi Mauro, G., Ferreyra, R., Suárez, J., & Jurado, A. (2015). Sobretensiones por Ferroresonancia en un Sistema de Distribución Eléctrica Rural: Reporte de Caso y Simulación. INGE CUC, 11(1), 34-47. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/378spa
dc.identifier.issn2382-4700
dc.identifier.issn0122-6517spa
dc.identifier.urihttp://hdl.handle.net/11323/1862
dc.description.abstractThe objective of this work was to analyze an overvoltage case in a rural distribution feeder belonging to an electrical distribution company in the southeast of the Buenos Aires Province in Argentina. The network was modeled in the Electromagnetic Transients Program, based on the electrical parameters that make up the circuit, in order to evaluate its behavior under various switching and load states. The simulation analysis showed that during certain operation and load situations, the conditions for the overvoltage phenomenon occurred, causing a voltage increase in the single-phase transformer feeding. The guidelines for prevention and control of the phenomenon were provided taking into account the results obtained in the study.eng
dc.description.abstractEl objetivo del trabajo presentado fue el de analizar un caso de sobretensión en un sistema de distribución de energía eléctrica rural (13,2kV) perteneciente a una Cooperativa de Electricidad del sudeste de la Policía de Buenos Aires, Rep. Argentina. A partir de los parámetros que componen el circuito eléctrico se modeló la red dentro del entorno del programa computacional Electromagnetic Transients Program, con el fin de evaluar su comportamiento ante distintas maniobras de interrupción y estados de carga. El análisis de la simulación demostró que, en ciertas situaciones de operación y carga, se conjugaron las condiciones para la ocurrencia del fenómeno de ferrorresonancia, ocasionando la elevación de tensión de alimentación en transformadores monofásicos. Considerando los resultados del estudio, se brindaron pautas a tener en cuenta para la prevención y control del fenómeno.spa
dc.language.isoengeng
dc.publisherCorporación Universidad de la Costa
dc.relation.ispartofseries1
dc.sourceINGE CUCeng
dc.subjectOvervoltageeng
dc.subjectFerroresonanceeng
dc.subjectRural electrical distributioneng
dc.subjectFuse openingeng
dc.subjectATPDraweng
dc.subjectNonlinear circuitseng
dc.subjectSobretensioneseng
dc.subjectFerroresonanciaeng
dc.subjectDistribución eléctrica ruraleng
dc.subjectApertura de fusibleseng
dc.subjectCircuitos no linealeseng
dc.titleOvervoltage by ferroresonance on a rural distribution feeder: case report and simulationeng
dc.title.alternativeSobretensiones por ferroresonancia en un sistema de distribución eléctrica rural: reporte de caso y simulacióneng
dc.typeArticleeng
dcterms.references[1] G. Buigues, I. Zamora, V. Valverde, A. J. Mazón, and J. I. S. Martín, “Ferroresonance in Three-Phase Power Distribution Transformers: Sources, Consequences and Prevention,” in 19th International Conference on Electricity Distribution, 2007, pp. 21–24.spa
dcterms.references[2] M. Roy and C. K. Roy, “A Study on Ferroresonance and Its Depedence on Instant of Switching Angle of the Source Voltage,” in International Conference on Power Systems ICPS´09, 2009, pp. 1–6. DOI:10.1109/icpws.2009.5442704
dcterms.references[3] K. Miličević, I. Rutnik, and I. Lukačević, “Impact of Initial Conditions and Voltage Source on the Initiation of Fundamental Frequency Ferroresonance,” in 12th WSEAS International Conference on SYSTEMS, 2008, pp. 22–24.
dcterms.references[4] J. B. Wareing and F. Perrot, “Ferroresonance overvoltages in distribution networks,” in IEEE Colloquium: Warning! Ferroresonance Can Damage Your Plant, 1997, pp. 1–5. DOI:10.1049/ic:19971178
dcterms.references[5] S. Santoso, R. C. Dugan, T. E. Grebe, and P. Nedwick., “Modeling Ferroresonance Phenomena in an Underground Distribution System,” in International Conference on Power Systems Transients IEEE IPST ´01, 2001, pp. 240–245.
dcterms.references[6] L. B. Crann and R. B. Flickinger, “Overvoltages on 14.4/24.9-Kv Rural Distribution Systems,” IEEE Trans. Power Appar. Syst., vol. 73, no. 3, pp. 1208–1212, 1954. DOI:10.1109/AIEEPAS.1954.4498949
dcterms.references[7] W. M. Edmunds and L. B. Crann, “Operating Experience With 14.4/24.9 Kv as a Rural Distribution Voltage,” III Trans. Am. Inst. Electr. Eng., vol. 75, no. 3, 1956. DOI:10.1109/AIEEPAS.1956.4499265
dcterms.references[8] R. Hopkinson, “Ferroresonance During Single-Phase Switching of 3-Phase Distribution Transformer Banks,” IEEE Trans. Power Appar. Syst., vol. 84, no. 4, pp. 289–293, 1965. DOI:10.1109/TPAS.1965.4766193
dcterms.references[9] P. Sakarung, T. Bunyagul, and S. Chatratana, “Investigation and Mitigation of Overvoltage Due to Ferroresonance in the Distribution Network,” J. Electr. Eng. Technol., vol. 2, no. 3, pp. 300–305, 2007. DOI:10.5370/JEET.2007.2.3.300
dcterms.references[10] P. Ferracci, La ferrorresonancia, Schneider Electric, 1997, pp. 12–20.
dcterms.references[11] L. A. Siegert, Alta Tensión y Sistemas de Transmisión, Caracas: Limusa, 1989.
dcterms.references[12] J. A. Corea-Araujo, F. Gonzalez-Molina, J. A. Martinez-Velasco, J. A. Barrado-Rodrigo, and L. Guasch-Pesquer, “An EMTP-Based Analysis of The Switching Shift Angle Effect During Energization/de-Energization in the Final Ferroresonance State,” in International Conference on Power System Transients (IPST), 2013.
dcterms.references[13] D. Jacobson, “Examples of ferroresonance in a high voltage power system,” IEEE Power Eng. Soc. Gen. Meet., vol. 2, pp. 1206–1212, 2003. DOI:10.1109/PES.2003.1270499
dcterms.references[14] V. Valverde, G. Buigues, A. J. Mazón, I. Zamora, and I. Albizu, “Ferroresonant Configurations in Power Systems,” in International Conference on Renewable Energies and Power Quality (ICREPQ’12), 2012.
dcterms.references[15] E. G. Vinson, A. Jurado, and N. Lemozy., “Ferroresonancia en Transformadores de Distribución. Influencia de sus Características, Secuencia de Maniobra y Carga Secundaria,” in VII Congreso Latinoamericano de Generación y Transporte de Energía Eléctrica, 2007, p. 7.
dcterms.references[16] G. Mokryani, M. R. Haghifam, H. Latafat, P. Aliparast, and A. Abdollahy, “Analysis of Ferroresonance in a 20 kV Distribution Network,” in 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), 2009, pp. 31–35. DOI:10.1109/peits.2009.5407008
dcterms.references[17] W. Chunbao, T. Lijun, and Q. Yinglin, “A study on factors influencing ferroresonance in distribution system,” in 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 583–588. DOI:10.1109/drpt.2011.5993960
dcterms.references[18] J. Viqueira Landa, Redes eléctricas, 2nd ed. México: Representaciones y Servicios de Ingeniería, 1973.
dcterms.references[19] Study Committee 33, “Guidelines for Representation of Network Elements when Calculating Transients,” in International Conference on Large High Voltage Electric Systems, 1988.
dcterms.references[20] J. A. Martinez-Velasco, Power System Transients: Parameter Determination, 1st ed. Estados Unidos: CRC Press, 2009.
dcterms.references[21] S. P. Ang, “Ferroresonance Simulation Studies of Transmission Systems,” University of Manchester, 2010.
dcterms.references[22] Instituto Argentino de Certificación y Normalización, Norma IRAM 2250. Argentina, 2005.
dcterms.references[23] B. Mork, F. Gonzalez, D. Ishchenko, and D. L. Stuehm, “Hybrid Transformer Model for Transient Simulation—Part I: Development and Parameters,” in IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 248–255, 2007. DOI:10.1109/TPWRD.2006.882999
dcterms.references[24] L. B. Viena, F. A. Moreira, N. R. Ferreira, and N. C. de Jesus, “A Comparative Analysis of Transformer Models Available in the ATP Program for the Simulation of Ferroresonance,” in International Conference on Power Systems Transients (IPST2011), 2011. DOI:10.1109/tdc-la.2010.5762966
dcterms.references[25] J. A. Martinez and B. A. Mork, “Transformer Modeling for Low- and Mid-Frequency Transients—A Review,” IEEE Trans. Power Deliv., vol. 20, no. 2, pp. 1625–1632, Apr. 2005. DOI:10.1109/TPWRD.2004.833884
dcterms.references[26] H. K. Høidalen, B. A. Mork, F. Gonzalez, D. Ishchenko, and N. Chiesa, “Implementation and verification of the Hybrid Transformer model in ATPDraw,” Electr. Power Syst. Res., vol. 79, no. 3, pp. 454–459, Mar. 2009. DOI:10.1016/j.epsr.2008.09.003
dcterms.references[27] L. M. Lobo, “Modelo de transformadores en saturación utilizando funciones de cálculo de parámetros en EMTP-RV,” Ing. Rev. Univ. Costa Rica, vol. 24, no. 2, pp. 105–116, 2014. DOI:10.15517/ring.v24i2.8251
dcterms.references[28] Ente Nacional Regulador de la Electricidad, Resolución ENRE 0444/2006. Argentina, 2006.
dcterms.references[29] R. A. Walling, “Ferroresonance in low-loss distribution transformers,” in 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), 2003, vol. 2, pp. 1220–1222.DOI:10.1109/PES.2003.1270502
dc.identifier.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/378


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record