Show simple item record

dc.creatorGómez Gómez, Aixa Lilianaspa
dc.creatorMedina Romero, Jorge Albertospa
dc.date.accessioned2019-01-15T15:06:10Z
dc.date.available2019-01-15T15:06:10Z
dc.date.issued2018-11
dc.identifier.urihttp://hdl.handle.net/11323/1975
dc.descriptionIngeniería Civilspa
dc.description.abstractIn the present work, generation models were estimated for travel study reasons of the University of the coast. The data used was obtained from a source-destination survey carried out for university students. Generation models were estimated using at least three methods: Multiple Linear Regression (RLM), category analysis (AC) and Ordinal Logit (LO). According to the results, the models (LO) showed greater econometric consistency and better indicators of goodness of fit. The models used are key for strategic planning in terms of mobility for the university of the coast. The generation of trips is a process that allows to relate the activities of the population with the trips that are made, the latter are intimately linked to the socioeconomic characteristics of the population, this relationship can be estimated through generation models used in the present draft. The average travel rates obtained with the travel models by categories and Ordinal Logit were analyzed, as well as models were generated by the Multiple Linear Regression method and the models obtained through the different statistical tests were evaluated to select the most reliable.eng
dc.description.abstractEn el presente trabajo se estimaron modelos de generación para viajes motivo estudio de la Universidad de la costa. Los datos utilizados se obtuvieron a partir de una encuesta origen destino realizada a estudiantes de la universidad. Se estimaron modelos de generación usando al menos tres métodos: Regresión Lineal Múltiple (RLM), análisis por categoría (AC) y Logit Ordinal (LO). De acuerdo a los resultados los modelos (LO) mostraron mayor consistencia econométrica y mejores indicadores de bondad de ajuste. Los modelos utilizados son clave para la planeación estratégica en materia de movilidad para la universidad de la costa. La generación de viajes es un proceso que permite relacionar las actividades de la población con los viajes que se realizan, estos últimos están íntimamente ligados a las características socioeconómicas de la población, esta relación se puede estimar a través de modelos de generación empleados en el presente proyecto. Se analizaron las tasas medias de viajes obtenidas con los modelos de viajes por categorías y Logit Ordinal, asi mismo se generaron modelos por el método de Regresión Lineal Múltiple y se evaluaron los modelos obtenidos a través de los diferentes test estadísticos para seleccionar los más confiables.spa
dc.language.isospaspa
dc.publisherUniversidad de la costaspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectGeneración de viajesspa
dc.subjectAnálisis por categoríasspa
dc.subjectAnálisis de clasificación lineal múltiplespa
dc.subjectRegresión lineal múltiplespa
dc.subjectLogit ordinaleng
dc.subjectTrip generationeng
dc.subjectAnalysis by categorieseng
dc.subjectMultiple linear classification analysiseng
dc.subjectMultiple linear regressioneng
dc.subjectOrdinal logiteng
dc.titleModelos de generación de viajes motivo estudio: caso Universidad de la Costaspa
dc.typeThesiseng
dcterms.referencesAlpkokin, P. Historical and critical review of spatial and transport planning in the Netherlands. Land Use Policy, Volume 29, Issue 3, July 2012, Pages 536-547 Chen, B.; Xie, Y.; Tong, W.; Dong, C.; Shi, D.; Wang, B. A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems. Physica A: Statistical Mechanics and its Applications, Volume 391, Issue 8, 15 April 2012, Pages 2730-2739, ISSN 0378-4371 Escobar, D. A. Instrumentos y metodología de planes de movilidad y transporte en las ciudades medias colombianas. Tesis doctoral, Universidad Politécnica de Cataluña, Departamento de Infraestructuras del Transporte y del Territorio, Programa de doctorado, “Gestión del territorio e infraestructuras del transporte”. Barcelona: 2008 Guevara, C. A.; A. Thomas. Multiple Classification Analysis in Trip Production Models. Transport Policy 14, (2007): 514-522. Hatzopoulou, M.; Miller, E.J. Transport policy evaluation in metropolitan areas: The role of modelling in decision-making. Transportation Research Part A: Policy and Practice, Volume 43, Issue 4, May 2009, Pages 323-338. Horton N.J.; K.P. Kleinman. Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. American Statistical Association 61(1), (2007), 79-90. Kikuchi, S.; J. Rhee. Adjusting Trip Rate in the Cross-Classification Table by Using the Fuzzy Optimization Method. Journal of the Transportation Research Board 1836, (2003): 76–82. Manheim, M. L. Fundamentals of Transportation Systems Analysis, Volume 1: Basic Concepts. MIT Press series in transportation studies, July 1979, Pages 10-57 Montgomery, D. C. Diseño y análisis de experimentos. Limusa Wiley, 2a. edición, México, 2013, 686 p. Mwakalonge, J. L.; Badoe, D. A. Comparison of Alternative Methods for Estimating Household Trip Rates of Cross-Classification Cells. Journal of the Transportation Research Forum, Vol. 51, No. 2 (Summer 2012), pp. 5-24. Nutt, P. Ch. Some guides for the selection of a decision-making strategy. Technological Forecasting and Social Change, Volume 19, Issue 2, March 1981, Pages 133-145, ISSN 0040-1625 Ortúzar, J. D. Modelos de demanda de transporte, 2a edición, Alfaomega, México (2011). Ortúzar, J. D.; Willumsen, L. G. Modelling Transport, 4th edition, Jhon Wiley & Sons Ltd. Chichester, United Kingdom (2011) Sheffi, Y. Urban Transportation Networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall Inc. New Yersey (1985) p. 2 Stopher, P.; McDonald, KG. Trip generation by cross-classification: an alternative methodology. Transportation Research Record 891, 10-17 (1983) Rengaraju, V.; M. Satyakumar. “Structuring Category Analysis Using Statistical Technique.” Journal of Transportation Engineering 20 (6), (1994): 931-939 Retherford, R. D.; M.K. Choe. Statistical Model for Causal Analysis. John Wiley & Sons, New York, Inc., NY, 1993. Wheeler, S.M., Beatley, T. The Sustainable Urban Development Reader, Routledge, New York (2004)spa
dc.contributor.tutorSerrano Arrieta, Iván Daríospa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record