Show simple item record

dc.creatorFranco Iriarte, Carolina
dc.date.accessioned2018-11-03T15:08:43Z
dc.date.available2018-11-03T15:08:43Z
dc.date.issued2017-04-03
dc.identifier.urihttp://hdl.handle.net/11323/221
dc.descriptionIngeniería Civilen_US
dc.description.abstractA nivel mundial, los accidentes de tránsito son considerados como la primera causa de muerte por violencia. En el 2015 según el Instituto Nacional de Medicina Legal, en Barranquilla se dio 104 decesos y 1330 heridos, es decir más del 50% de los casos presentados en el departamento del Atlántico. Una de las maneras de contrarrestar esta situación es identificar los diferentes factores que contribuyen a la frecuencia de accidentes, siendo este el objeto de estudio del presente proyecto. Para esto se procede a la modelación estadística de los accidentes usando las distribuciones de Poisson y Binomial Negativo, teniendo como fin determinar los factores que influye en la ocurrencia de estos. De acuerdo al modelo utilizado, se obtienen como resultados distintas variables que intervienen, ya sea que estas incrementen la posibilidad de ocurrencia accidentes, tales como longitud de la vía, número de intersecciones, Transmetro, motos, entre otros, o bien sea contribuyendo a disminuirlos, como pasos peatonales, semáforo y demás. Todo esto para proceder a formular algunas recomendaciones que pueden ser tomadas en cuenta por las autoridades para poder contribuir a la disminución de siniestros en la ciudad.es_CO
dc.description.abstractGlobally, traffic accidents are considered the leading cause of death from violence. In 2015, according to the National Institute of Forensic Medicine, in Barranquilla, 104 deaths and 1330 injuries were reported, more than 50% of the cases presented in the Atlantico department. One of the ways to counteract this situation is to identify the different factors that contribute to the frequency of accidents, which is the object of study of this project. For this, we proceed to the statistical modeling of accidents using Poisson and Negative Binomial distributions, in order to determine the factors that influence the occurrence of these. According to the model used, different variables are obtained that intervene, whether they increase the possibility of occurrence of accidents, such as length of the road, number of intersections, Transmetro, motorcycles, among others, or contributing to decrease them , such as pedestrian crossings, traffic lights and so on. All of this to be able to proceed to formulate some recommendations that can be taken into account by the authorities in order to contribute to the reduction of casualties in the city.en_US
dc.language.isospaen_US
dc.rightsAtribución – No comercial – Compartir igualen_US
dc.subjectAccidentes de tránsitoen_US
dc.subjectModelación estadísticaen_US
dc.subjectPoissonen_US
dc.subjectBinomial Negativoen_US
dc.subjectFrecuencia de accidentesen_US
dc.subjectTraffic accidents
dc.subjectstatistical modeling
dc.subjectPoisson
dc.subjectNegative Binomial
dc.subjectfrequency of accidents
dc.titleEstudio de factores que contribuyen en la frecuencia de accidentes en zonas urbanas. caso de estudio barranquillaen_US
dc.typeThesisen_US
dcterms.referencesABDEL-ATY, Mohamed, y RADWAN, Essam. Modeling traffic accident occurrence and involment. Accident Analysis & Prevention Vol. 32 (2000): 633-642. AGBELIE, Bismark. Random-parameters analysis of highway characteristics on crash frequency and injury severity. Journal of Traffic and Transportation Engineering Vol. 3 (2016): 236-242. AGBELIE, Bismark, ARASH Roshandeh. Impact of signal-Related characteristics on crash frequency at urban signalized intersections. Journal of Transportation Safety & Security, 2015: 199-207. ARÉVALO, Andrea. FACTORES DETERMINANTES DE LA FRECUENCIA DE ACCIDENTES EN VÍAS RURALES: ANÁLISIS SOBRE LAS CARRETERAS COLOMBIANAS. Barranquilla: Universidad del Norte, 2015. CANTILLO, Víctor, GARCÉS, Patricia; MÁRQUEZ, Luis. Factors influencing the occurrence of traffic accidents in urban roads; A combined GIS-Empirical Bayesian approach. DYNA Vol. 83 (2016): 21-28. CASTRILLÓN, Antonio Dourthé. GUÍA PARA REALIZAR UNA AUDITORÍA DE SEGURIDAD VIAL. Santiago de Chile: CONASET, 2003. CHANG, Li-yen; CHU, Hsing-chung, Da-jie LIN, y Pei LUIi. Analysis of freeway accident frecuency using multivariate adaptive regression splines. Procedia Engineering, 2012: 824-829. CHIUO, Yu-Chin; FU, Chiang. Modeling crash frequency and severity using multinomialgeneralized Poisson model with error components. Accident Analysis & Prevention Vol.50 (2013): 73-82. DONELL, Eric; MASON JR, Jhon. Predicting the frequency of median barrier crashes on Pennsylvania interstate highways. Accident Analysis and Prevention Vol.38 (2005): 590-599. DONG, Chunjiao; RICHARDS, Stephen; CLARKE ,David;ZHOU, Xuemei; MA ,Zhaunglin.. Examining signalized intersection crash frequency using multivariate zero-inflated Poisson regression. Safety Science Vol.70 (2014): 63-69. Forensis. Comportamiento de muertes y lesiones por accidentes de transporte. Colombia, 2015. Bogota, 2016. GUERRERO BARBOSA, Thomas; ESPINEL BAYONA ,Yenica, y PALACIO SÁNCHEZ,Darwin. Effects of the Attributes Associated with roadway geometry, traffic volumen and speeds on the incidence of accidents in a mid-size City. Ingeniería y Universidad Vol.19 (2015): 351-367. HOSSEINPOUR, Mehdi; YAHAYA, Ahmad, y SADULLAH, Ahmad. Exploring the effects of roadway characteristics on the frequency and severity of head-on crashes: Case studies from Malaysian Federal Roads. Accident Analysis & Prevention Vol.62 (2014): 209-222. KUMARA, S. S. P., y H. C. CHIN. Modeling Accident Occurrence at Signalized Tee Intersections with Special Emphasis on Excess Zeros. Traffic Injury Prevention Vol.4 (2010): 53-57. LLOYD, Louise, y FORSTER, Jonathan. «Modelling trends in road accident frequency— Bayesian inference for rates with uncertain exposure.» Computational Statistics & Data Analysis, 2014: 189-204. LORD, Dominique. Modeling motor vehicle crashes using Poisson- Gamma modeling: Examing the effect of low sample mean values and small sample size on he estimation of the fixed dispersion paremeter.» Accident Analysis and Prevention Vol.38 (2006): 751-766. LORD, Dominique, y MANNERING, Fred. The statistical analysis of crash-frequency data: A review and assessment of methodological altenatives. Trnsportation research part A: Policy and practice Vol. 43 (2010): 291-305. MA, Zhuanglin; ZHANG, Honglu; I-JY CHIEN, Steven; WANG, Jin, y DONG, Chunjiao. Predicting expressway crash frequency using a random effect negative binomial model. A case study in China. Accident Analysis and Prevention 98 (2017): 214- 222. MANNERING, Fred; KARLFTIS, Matthew, y WASHINGTON, Simon. Statistical and econometric methods for transportation analysis. segunda edición. Chapman & Hall, 2003. MIAU, Shaw Pin. The relationship between truck accidents and geometric designs of road sections : Poisson versus Negative Binomial Regressions. Accident Analysis & Prevention Vol.26 (1994): 471- 482. OMS. Informe sobre la situación mundial de la seguridad vial 2015. 2015. SECRETARIA DISTRITAL DE MOVILIDAD. METODOLOGÍA PARA EL ANÁLISIS DE LA SEGURIDAD VIAL EN SITIOS CRÍTICOS DE LA CIUDAD DE BARRANQUILLA.Barranquilla, 2011.Tomado de: www.barranquilla.gov/movilidad SERRET MORENO-JIL, Jaime. MANUAL DE ESTADÍSTICA UNIVERSITARIA (INDUCTIVA). MADRID: ESIC EDITORIAL, 1995. SHANKAR, V; MANNERING, Fred, y W BARFIELD. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accident Analysis & Prevention Vol. 27 (1995): 371- 389. SHENKER, Ravi, Arti CHOWKSEY, y SANDHU, Har Amrit Singh. «Analysis of relationship between parameters of four lane National higway in India.» IOSR Journal of Business and Management, 2015: 60-70. Universidad de Antioquia. Aprende en linea. Plataforma academica para pregrado y postgrado. s.f. http://aprendeenlinea.udea.edu.co/lms/moodle/mod/page/view.php?id=35730 (último acceso: 30 de Enero de 2017). WASHINGTON, Simon, MATTHEW, Karlaftis, y MANNERING, Fred. Statistical and economettric methods for transportation data analysis. Cahpman & Hall, 2003. XIi, Jianfeng, ZHAO, Zhonghao, Wei L, y Wang QUAN. A traffic accident causation analysis method based on AHP-Apriori. Procedia Engineering Vol 137 (2016): 680-687. ZENG, Qiang; HUANG, Helai, PEI, Xin, y S.C WONG. Modeling nonlinear relationship between crash frequency by severity and contibuiting factors by neural networks. Analytic Methods in Accident Research Vol.10 (2016): 12-25. ZENG, Quiang; HUANG, Helai; PEI, Xin; GAO, Mingyun. Rule extraction from a optimized neural network for traffic crash frequency modeling. Accident analysis and prevention. Vol. 97 (2016): 8-95.
dc.contributor.coasesorOrozco F, Mauricio
dc.contributor.authordirArévalo T, Andrea
dc.contributor.authorcoMendoza Ortega, Alexander Junior


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record