Mostrar el registro sencillo del ítem

dc.contributor.authorAlbis Arrieta, Alberto Ricardospa
dc.contributor.authorOrtiz Muñoz, Everspa
dc.contributor.authorPiñerez Ariza, Ismelspa
dc.contributor.authorAriza Barraza, Cindy Skarlettspa
dc.contributor.authorDíaz Durán, Ana Katherinespa
dc.date.accessioned2019-02-12T23:26:26Z
dc.date.available2019-02-12T23:26:26Z
dc.date.issued2018-01-01
dc.identifier.citationA. R. Albis Arrieta, E. Ortiz Muñoz, I. E. Piñeres Ariza, C. S. Ariza Barraza y A. K. Díaz-Durán, “Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)”, INGE CUC, vol. 14, no. 1, pp. 113-121, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.10spa
dc.identifier.urihttp://hdl.handle.net/11323/2433spa
dc.description.abstractIntroducción: La pirólisis de residuos agroindustriales es una alternativa para generar combustibles líquidos de segunda generación.Objetivo: Determinar la cinética de la pirólisis de residuos industriales de yuca y de formación de productos.Metodología: Se estudió la pirólisis de residuos provenientes de la industria del almidón de yuca utilizando termogravimetría acoplada a espectrometría de masas. Los datos termogravimétricos fueron ajustados al modelo cinético de distribución de energías de activación, siendo necesario el uso de sólo un pseudocomponente.Resultados: La pirólisis de las muestras calentadas a velocidades inferiores a 30 K/min mostró valores de los parámetros cinéticos diferentes a los de la pirólisis de las muestras calentadas a velocidades superiores a 50 K/min, lo cual sugiere un cambio de mecanismo con la velocidad de calentamiento. Los valores obtenidos de los parámetros cinéticos de la pirólisis de los residuos estudiados se encuentran en el rango reportado de la literatura para otros tipos de biomasa. Se identificaron 23 relaciones m/z en los gases desprendidos de la muestra con suficiente relación señal/ruido. Las señales de espectrometría de masas seleccionadas fueron ajustadas con el modelo DAEM utilizando los parámetros cinéticos obtenidos con los datos termogravimétricos.Conclusiones: Se obtuvieron buenos resultados de ajuste con el modelo DAEM de un solo pseudocomponente para la mayoría de las relaciones m/z. La falta de ajuste para las relaciones m/z que no ajustaron se puede atribuir a reacciones secundarias en fase gaseosa.spa
dc.description.abstractIntroduction− The pyrolysis of agro-industrial waste is an alternative to produce second generation liquid fuels.Objective−Determine the kinetics in the pyrolysis process of cassava industrial waste as well as of evolved product formation. Methodology−Pyrolysis of waste from cassava starch processing was studied via thermogravimetric analysis coupled to mass spectrometry. Thermogravimetric data were adjusted to the distributed activation energy model with one pseudocomponent. Results− Pyrolysis of samples heated at ramps below 30 K/min showed kinetics parameters with different values from the ones obtained for the samples heated at ramps above 50 K/min. This suggests a change in the pyrolysis reaction mechanism linked to heating rate. The kinetics parameters obtained in this work are in agreement with values reported for other biomass in literature. From the evolved gases, 23 m/z signals were identified with enough signal/noise ratio. Mass spectrometry signals were also adjusted with the distributed activation energy model us-ing the kinetics parameters obtained from thermogravi-metric data.Conclusions−Satisfactory results were achieved with the DAEM model with one pseudocomponent for most of m/z ratio. The lack of adjustment in some m/z ratio can be attributed to secondary reactions in the gas phase.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 14, Núm. 1 (2018)spa
dc.sourceINGE CUCspa
dc.titleAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)spa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/ingecuc.14.1.2018.10spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1621spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/ingecuc.14.1.2018.10spa
dc.identifier.eissn2382-4700spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn0122-6517spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.references[1] N. J. Tonukari, “Cassava and the future of starch,” Electron. J. Biotechnol., vol. 7, no. 1, pp. 5-8, 2004. http://dx.doi.org/10.4067/S0717-34582004000100003spa
dc.relation.references[2] S. Mombo, C. Dumat, M. Shahid y E. Schreck, “A socioscientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption,” Environ. Sci. Pollut. Res., pp. 1-15, 2016. https://doi.org/10.1007/s11356-016-8190-zspa
dc.relation.references[3] A. Adekunle, V. Orsat y V. Raghavan, “Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels,” Renew. Sustain. Energy Rev., vol. 64, pp. 518-530, 2016. https://doi.org/10.1016/j.rser.2016.06.064spa
dc.relation.references[4] H. A. Acosta Arguello, C. A. Barraza Yance y A. R. Albis Arrieta, “Adsorción de cromo (VI) utilizando cáscara de yuca (Manihot esculenta) como biosorbente: Estudio cinético,” Ingeniería y Desarrollo, vol. 35, no. 1, 2017. http://dx.doi.org/10.14482/inde.33.2.6368spa
dc.relation.references[5] A. R. Albis Arrieta, J. Martínez y P. Santiago, “Remoción de Zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna/Removal of zinc (II) from aqueous solutions using cassavapeel (Manihot esculenta): column experiments,” Prospectiva, vol. 15, no. 1, pp. 16-28, 2017.spa
dc.relation.references[6] A. R. Albis Arrieta, J. D. Ortiz Toro y J. E. Martínez De la Rosa, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, pp. 42-52, 2017. http://dx.doi.org/10.17981/ingecuc.13.1.2017.04spa
dc.relation.references[7] E. R. Zanatta et al., “Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 437-445, 2016. https://doi.org/10.1007/s10973-016-5378-xspa
dc.relation.references[8] J. Corton et al., “Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes,” Appl Energy, vol. 177, pp. 852-862, 2016. https://doi.org/10.1016/j.apenergy.2016.05.088spa
dc.relation.references[9] O. L. Ki, A. Kurniawan, C. X. Lin, Y.-H. Ju y S. Ismadji, “Bio-oil from cassava peel: a potential renewable energy source,” Bioresour. Technol., vol. 145, pp. 157-161, 2013. https://doi.org/10.1016/j.biortech.2013.01.122spa
dc.relation.references[10] K. Jayaraman, M. V. Kok y I. Gokalp, “Combustion properties and kinetics of different biomass samples using TG–MS technique,” J. Therm. Anal. Calorim., vol. 127, no. 2, pp. 1361-1370, 2017. https://doi.org/10.1007/s10973-016-6042-1spa
dc.relation.references[11] W. Groenewoud y W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique,” Thermochim. Acta, vol. 286, no. 2, pp. 341-354, 1996. https://doi.org/10.1016/0040-6031(96)02940-1spa
dc.relation.references[12] G. Özsin y A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR,” Waste Manag., 2017. https://doi.org/10.1016/j.wasman.2017.03.020spa
dc.relation.references[13] S. Polat, E. Apaydin-Varol y A. E. Pütün, “Thermal decomposition behavior of tobacco stem Part I: TGA– FTIR–MS analysis,” Energy Sourc. A Recov. Util. Environ. Effects, vol. 38, no. 20, pp. 3065-3072, 2016. https://doi.org/10.1080/15567036.2015.1129373spa
dc.relation.references[14] T. Chen, J. Zhang y J. Wu, “Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model,” Bioresour. Technol., vol. 211, pp. 502-508, 2016. https://doi.org/10.1016/j.biortech.2016.03.091spa
dc.relation.references[15] X. Yao, K. Xu y Y. Liang, “Analytical Pyrolysis Study of Peanut Shells using TG-MS Technique and Characterization for the Waste Peanut Shell Ash,” J. Residuals Sci. Technol., vol. 13, no. 4, 2016.spa
dc.relation.references[16] A. Malika, N. Jacques, B. Fatima y A. Mohammed, “Pyrolysis investigation of food wastes by TG-MS-DSC technique,” Biomass Convers. Biorefin., vol. 6, no. 2, pp. 161-172, 2016. https://doi.org/10.1007/s13399-015-0171-9spa
dc.relation.references[17] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue,” Korean J. Chem. Eng., vol. 28, no. 12, pp. 2262-2274, 2011. https://doi.org/10.1007/s11814-011-0116-3spa
dc.relation.references[18] A. Pattiya y S. Suttibak, “Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 227-235, 2012. https://doi.org/10.1016/j.jaap.2012.02.010spa
dc.relation.references[19] A. Pattiya, J. O. Titiloye y A. V. Bridgwater, “Fast pyrolysis of agricultural residues from cassava plantation for bio-oil production,” Carbon, vol. 51, p. 51.59, 2009.spa
dc.relation.references[20] A. Pattiya, S. Sukkasi y V. Goodwin, “Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor,” Energy, vol. 44, no. 1, pp. 1067-1077, 2012. https://doi.org/10.1016/j.energy.2012.04.035spa
dc.relation.references[21] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass,” Suranaree J. Sci. Technol., vol. 17, no. 4, 2010.spa
dc.relation.references[22] G. Várhegyi, P. Szabó y M. J. Antal, “Kinetics of charcoal devolatilization,” Energy fuels, vol. 16, no. 3, pp. 724-731, 2002. https://doi.org/10.1016/S0165-2370(96)00971-0spa
dc.relation.references[23] G. Varhegyi, M. J. Antal Jr, E. Jakab y P. Szabó, “Kinetic modeling of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 42, no. 1, pp. 73-87, 1997.spa
dc.relation.references[24] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam y C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric– mass spectrometric experiments,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 310-322, 2009. https://doi.org/10.1016/j.jaap.2009.08.008spa
dc.relation.references[25] G. Várhegyi, P. Szabó, F. Till, B. Zelei, M. J. Antal y X. Dai, “TG, TG-MS, and FTIR characterization of highyield biomass charcoals,” Energy fuels, vol. 12, no. 5, pp. 969-974, 1998. https://doi.org/10.1021/ef9800359spa
dc.relation.references[26] A. Albis, E. Ortiz, A. Suárez y I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum),” J. Therm. Anal. Calorim., pp. 1-9, 2013. https://doi.org/10.1007/s10973-013-3227-8spa
dc.relation.references[27] J. P. S. Veiga, T. L. Valle, J. C. Feltran y W. A. Bizzo, “Characterization and productivity of cassava waste and its use as an energy source,” Renew. energy, vol. 93, pp. 691-699, 2016. https://doi.org/10.1016/j.renene.2016.02.078spa
dc.relation.references[28] J. Yue y C. Zuo, “Study on pyrolysis of cassava residues in N2 atmosphere,” Kezaisheng Nengyuan/Renew.Energy Resour., vol. 27, no. 4, pp. 47-50, 2009.spa
dc.relation.references[29] J. Cai, W. Wu y R. Liu, “An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 36, no. 0, pp. 236-246, 2014. http://dx.doi.org/10.1016/j.rser.2014.04.052spa
dc.relation.references[30] F.-X. Collard y J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, no. 0, pp. 594-608, 2014. http://dx.doi.org/10.1016/j.rser.2014.06.013spa
dc.relation.references[31] X. Cao et al., “Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles,” Bioresour. Technol., vol. 155, pp. 21-27, 2014. https://doi.org/10.1016/j.biortech.2013.12.006spa
dc.relation.references[32] J. Cai y L. Ji, “Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass,” J. Math. Chem., vol. 42, no. 3, pp. 547-553, 2007. https://doi.org/10.1007/s10910-006-9130-9spa
dc.relation.references[33] A. Meng, H. Zhou, L. Qin, Y. Zhang y Q. Li, “Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 28-37, 2013. https://doi.org/10.1016/j.jaap.2013.09.013spa
dc.subject.proposalAnálisis termogravimétricospa
dc.subject.proposalCinéticaspa
dc.subject.proposalEspectrometría de masasspa
dc.subject.proposalPirólisisspa
dc.subject.proposalBiomasaspa
dc.subject.proposalThermogravimetric analysiseng
dc.subject.proposalKineticseng
dc.subject.proposalMass spectroscopyeng
dc.subject.proposalPyrolysiseng
dc.subject.proposalBiomasseng
dc.title.translatedEvolved gas analysis of cassava (Manihot esculenta) industrial wasteeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage121spa
dc.relation.citationendpage113spa
dc.relation.citationissue1spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevINGE CUCspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem