Mostrar el registro sencillo del ítem

dc.contributor.authorMillán Páramo, Carlosspa
dc.date.accessioned2019-02-13T21:39:46Z
dc.date.available2019-02-13T21:39:46Z
dc.date.issued2017-07-01
dc.identifier.citationC. Millán Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, pp. 102-111, 2017. DOI: http://doi.org/10.17981/ingecuc.13.2.2017.11spa
dc.identifier.urihttp://hdl.handle.net/11323/2466spa
dc.description.abstractIntroducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmosspa
dc.description.abstractIntroduction−In recent years, the importance of economic considerations in the field of structures has motivated many researchers to employ new meth-ods for minimizing the weight of the structures. The main goal of the struc-tural optimization is to minimize the weight of structures while satisfying all design requirements imposed by design codes.Objective−In this study, the Water Wave Optimization (WWO) algorithm is implemented to solve the problem of structural optimization of 2D and 3D truss structures.Methodology−The study is composed of three main phases: 1) formulation of the structural optimization problem; 2) study of the fundamentals and param-eters that control the WWO algorithm and 3) evaluate the WWO performance in optimization problems of truss structures reported in the specialized lit-erature.Results− The values of weight, average weight, standard deviation and the total number of analyses executed to converge to the optimum design obtained with WWO indicate that the algorithm is a good tool to minimize the weight of truss structures subject to stress and displacements constrained. Conclusions− It was observed that the WWO algorithm is effectively, effciently and robust to solve different types of problems, with different num-bers of elements. Furthermore, WWO requires a lower number of analyses to converge to the optimum design compared to other algorithmseng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 13, Núm. 2 (2017)spa
dc.sourceINGE CUCspa
dc.titleDiseño óptimo de armaduras empleando optimización con ondas del aguaspa
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.17981/ingecuc.13.2.2017.11spa
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1628spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.17981/ingecuc.13.2.2017.11spa
dc.identifier.eissn2382-4700spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.pissn0122-6517spa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.ispartofjournalINGE CUCspa
dc.relation.references[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671spa
dc.relation.references[2] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201spa
dc.relation.references[3] J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105spa
dc.relation.references[4] X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1spa
dc.relation.references[5] J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968spa
dc.relation.references[6] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436spa
dc.relation.references[7] F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-Xspa
dc.relation.references[8] J. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5spa
dc.relation.references[9] C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)spa
dc.relation.references[10] K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002spa
dc.relation.references[11] K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007spa
dc.relation.references[12] O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005spa
dc.relation.references[13] C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)spa
dc.relation.references[14] L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020spa
dc.relation.references[15] R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013spa
dc.relation.references[16] L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004spa
dc.relation.references[17] A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011spa
dc.relation.references[18] A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003spa
dc.relation.references[19] A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021spa
dc.relation.references[20] M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003spa
dc.relation.references[21] S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022spa
dc.relation.references[22] S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011spa
dc.relation.references[23] C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020spa
dc.relation.references[24] A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012spa
dc.relation.references[25] A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003spa
dc.relation.references[26] A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006spa
dc.relation.references[27] A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056spa
dc.relation.references[28] A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002spa
dc.relation.references[29] Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008spa
dc.relation.references[30] C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01spa
dc.subject.proposalOptimización con ondas del aguaspa
dc.subject.proposalOptimización estructuralspa
dc.subject.proposalArmadurasspa
dc.subject.proposalMetaheurísticaspa
dc.subject.proposalWater wave optimizationeng
dc.subject.proposalStructural optimizationeng
dc.subject.proposalTruss structureseng
dc.subject.proposalMetaheuristiceng
dc.title.translatedOptimal design of truss structures using water wave optimizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.relation.citationendpage111spa
dc.relation.citationstartpage102spa
dc.relation.citationissue2spa
dc.relation.citationvolume13spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.ispartofjournalabbrevINGE CUCspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Revistas Científicas [1682]
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Mostrar el registro sencillo del ítem