Show simple item record


dc.creatorHerrera Sepúlveda, Lyda Vanessa
dc.creatorMelo Pinzón, Uriel Alberto
dc.creatorAlzate Castaño, Ricardo
dc.date.accessioned2019-02-18T19:17:54Z
dc.date.available2019-02-18T19:17:54Z
dc.date.issued2014-12-31
dc.identifier.citationHerrera Sepúlveda, L., Melo Pinzón, U., & Alzate Castaño, R. (2014). Control local en el espacio de estados para un prototipo real de péndulo invertido traslacional. INGE CUC, 10(2), 36 - 42. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/488spa
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.identifier.urihttp://hdl.handle.net/11323/2598
dc.description.abstractEste artículo aborda la readecuación de un prototipo de laboratorio para péndulo invertido traslacional, buscando recobrar su capacidad funcional y ejercer control local para mantener erguido el brazo del péndulo. En términos de control, el problema que se va a resolver será la viabilidad de una técnica de control por realimentación de estados en el prototipo experimental empleando un dispositivo de proceso de bajo costo. Se realizó por tanto, el diseño y la implementación de circuitos para el acondicionamiento de señales entre los dispositivos de medida, actuación y control. Se diseñó e implementó una estrategia de control por realimentación de estados en un microcontrolador Arduino Mega. Los resultados de simulación predicen la regulación del estado, que posteriormente fue corroborada de manera experimental con el prototipo de laboratorio. Actividades complementarias incluyen el análisis de técnicas avanzadas de control sobre el sistema, al igual que la inclusión de términos de no-linealidad en los modelos.spa
dc.description.abstractThis paper describes the restructuring of an inverted pendulum prototype in order to re-cover its functional capacity and perform local control to uphold pendulum’s arm upright position. Regarding control, state-feedback control feasibili-ty for the experimental prototype using a low-cost process device was studied. For this, the design and implementation of signal conditioning cir-cuitry for measurement, performance, and control devices was accomplished. An experimental proce-dure was performed to validate the mathematical model proposed for the system, and therefore, the state-feedback controller was designed based on this. State regulation towards zero was obtained on both simulations of the model and the experimental rig when trying to keep the vertical position of the pendulum. Ongoing tasks include the analysis of advanced state-space control techniques and con-siderations regarding nonlinearities in the model of the systemeng
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 10, Núm. 2 (2014)
dc.sourceINGE CUCspa
dc.subjectControl localspa
dc.subjectControl por realimentación de estadosspa
dc.subjectMicrocontrolador arduinospa
dc.subjectPéndulo invertido traslacionalspa
dc.subjectPrototipo experimentalspa
dc.subjectArduino microcontrollereng
dc.subjectExperimental rigeng
dc.subjectLocal controleng
dc.subjectState-feedback controleng
dc.subjectTranslational inverted pendulumeng
dc.titleControl local en el Espacio de Estados para un Prototipo real de Péndulo invertido traslacionalspa
dc.title.alternativeState-space local control for a real prototype of a translational inverted pendulumeng
dc.typeArticlespa
dcterms.references[1] G. Chong, Kiam Heong Ang, and Y. Li, “PID control system analysis, design, and technology”, IEEE Trans. Control Syst. Technol., vol. 13, n° 4, pp. 559-576, July 2005.spa
dcterms.references[2] F. Padula and A. Visioli, “Tuning rules for optimal PID and fractional-order PID controllers”, J. Process Control, vol. 21, n° 1, pp. 69-81, Jan. 2011.
dcterms.references[3] J. A. Romero, R. Sanchis, and P. Balaguer, “PI and PID auto-tuning procedure based on simplified single parameter optimization”, J. Process Control, vol. 21, n° 6, pp. 840-851, July 2011.
dcterms.references[4] M. U. Draz, M. S. Ali, M. Majeed, U. Ejaz, and U. Izhar, “Segway electric vehicle”, in 2012 International Conference of Robotics and Artificial Intelligence, 2012, pp. 34-39.
dcterms.references[5] T. Kuwata, M. Tanaka, M. Wada, T. Umetani, and M. Ito, “Localization of Segway RMP”, in SICE Annual Conference (SICE), 2011, pp. 1675-1680.
dcterms.references[6] H.-W. Lee, S.-W. Ryu, and J. Lee, “Optimal posture of Mobile Inverted Pendulum using a single gyroscope and tilt sensor”, in ICCAS-SICE, 2009, pp. 865-870.
dcterms.references[7] M. Rohmanuddin, E. M. Budi, and R. Purnama, “Design of horizontal seismic sensor with spherical inverted pendulum and magnetic levitation”, in 2011 2nd International Conference on Instrumentation Control and Automation, 2011, pp. 200-204.
dcterms.references[8] J. Yi, N. Yubazaki and K. Hirota, “Upswing and stabilization control of inverted pendulum system based on the SIR Ms dynamically connected fuzzy inference model”, Fuzzy Sets Syst., vol. 122, n° 1, pp. 139-152, Aug. 2001.
dcterms.references[9] J.J. Wang, “Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control”, ISA Trans., vol. 51, n° 6, pp. 763-70, Nov. 2012.
dcterms.references[10] M. Bettayeb, C. Boussalem, R. Mansouri, and U. M. Al- Saggaf, “Stabilization of an inverted pendulum-cart system by fractional PI-state feedback”, ISA Trans., vol. 53, n° 2, pp. 508-16, March 2014.
dcterms.references[11] E. Vinodh Kumar and J. Jerome, “Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum”, Procedia Eng., vol. 64, pp. 169-178, Jan. 2013.
dcterms.references[12] Z. Li and Y. Zhang, “Robust adaptive motion/force control for wheeled inverted pendulums”, Automatica, vol. 46, n° 8, pp. 1346-1353, Aug. 2010.
dcterms.references[13] Quanser®, Automation systems, 2014. [Online]. Available: http://www.quanser.com/
dcterms.references[14] Feedback®, Automation systems, (2014). [Online]. Available: http://www.feedback-instruments.com/
dcterms.references[15] Lab-Volt®, Automation systems, (2014). [Online]. Available: https://www.labvolt.com/
dcterms.references[16] ECP Systems®, Automation systems, (2014). [Online]. Available: http://www.ecpsystems.com/
dcterms.references[17] K. Passino, weLA B: Low-Cost Engineering Laboratoy Project, (2014). [Online]. Available: https://welab.engineering.osu.edu/
dcterms.references[18] O. Ortiz y E. Marin, “Control mediante lógica Fuzzy De un péndulo invertido”, B.Sc. thesis, School of Mech. Eng.Univ. Ind. de Santander, Bucaramanga (Santander), 2005.
dcterms.references[19] K. Ogata, Modern Control Engineering, 5th ed. New York: Prentice Hall, 2009, p. 912.
dcterms.references[20] L. Herrera, U. Melo, “Control en Espacio de Estados para un Prototipo Real de Péndulo Invertido,” B.Sc. thesis, School of Elect. Eng. Univ. Ind. de Santander, Bucaramanga (Santander), 2013.
dc.source.urlhttps://revistascientificas.cuc.edu.co/ingecuc/article/view/488
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.eissn2382-4700
dc.identifier.pissn0122-6517
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record