Show simple item record

dc.creatorBarrera Amorocho, Manuel
dc.creatorTorres Quintero, Gonzalo
dc.creatorContreras Pico, Carlos
dc.creatorMeneses Fonseca, Jaime
dc.identifier.citationBarrera Amorocho, M., Torres Quintero, G., Contreras Pico, C., & Meneses Fonseca, J. (2013). Análisis preliminar de un sistema de reconstrucción tridimensional multicaptor. INGE CUC, 9(1), 129-142. Recuperado a partir de
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.description.abstractLa reconstrucción tridimensional (3D) es una técnica cuyas aplicaciones van desde el campo industrial hasta la medicina estética. Estudios para su implementación y mejoramiento han sido analizados en todo el mundo, pero infortunadamente los resultados de dichos estudios están altamente protegidos y son de difícil acceso. Este trabajo trata específicamente de la reconstrucción tridimensional por medio de la técnica de proyección de franjas. Para ello se implementó un sistema multicaptor que consta de dos sistemas de proyección-observación. Adicionalmente, en este trabajo se realiza el empalme de dos reconstrucciones obtenidas independientemente por cada uno de los sistemas de proyección-observación; de esta manera resulta información metrológica en zonas de los objetos que se quieren reconstruir, que son de difícil acceso. Este proceso se lleva a cabo partiendo de referencias obtenidas mediante la realización de calibraciones rigurosas de los sistemasspa
dc.description.abstractThe use of three-dimensional reconstruction’s technique may range from industrial to aesthetic medicine fields. Studies for the implementation and refinement of this tech-nique have been tested worldwide, but unfortunately, the results of these studies are highly protected and are difficult to obtain. The analysis developed in this research is specifically about three-dimensional reconstruction using the fringe projection tech-nique. A multicaptor system was implemented in it consisting of two sets of projection-ob-servation. Additionally, a splice between the two reconstructions obtained independently by each of the projection-observation systems was made; in this way, it was possible to obtain metrological information of the objects in zones in order to reconstruct them. This process is carried out based on references obtained through rigorous calibration processes of the systemseng
dc.publisherCorporación Universidad de la Costaspa
dc.relation.ispartofseriesINGE CUC; Vol. 9, Núm. 1 (2013)
dc.sourceINGE CUCspa
dc.subjectReconstrucción tridimensionalspa
dc.subjectProyección de franjasspa
dc.subjectSistema multicaptorspa
dc.subjectThree-dimensional reconstructioneng
dc.subjectFringe projectioneng
dc.subjectMulticaptor systemeng
dc.titleAnálisis preliminar de un sistema de reconstrucción tridimensional multicaptorspa
dc.title.alternativePreliminary analysis of a multi-captor three-dimensional reconstruction systemeng
dcterms.references[1] L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection”, Meas. Sci. Techn., 16 (5) (2005), pp.
dcterms.references[2] K. Genovese and C. Pappalettere, “Whole 3D shape reconstruction of vascular segments under pressure via fringe projection techniques”, Opt. Laser Eng., 44 (12) (2006), pp. 1311-1323.
dcterms.references[3] F. Lilley, M. J. Lalor and D. R. Burton, “Robust fringe analysis system for human body shape measurement”, Opt. Eng., 39 (1) (2000), pp. 187-195.
dcterms.references[4] A. Hanafi, T. Gharbi and J. Cornu, “In vivo measurement of lower back deformations with Fourier-transform profilometry”, Appl. Opt., 44 (12) (2005), pp. 2266- 2273.
dcterms.references[5] S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstadt, J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device”, Skin Research and Technology, 5 (3) (1999), pp. 195-207.
dcterms.references[6] S. T. Yilmaz, U. D. Ozugurel, K. Bulut and M. N. Inci, “Vibration amplitude analysis with a single frame using a structured light pattern of a four-core optical fibre”, Opt. Commun., 249 (4-6) (2005), pp. 515- 522.
dcterms.references[7] P. S. Huang, F. Jin and F. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique”, Opt. Laser Eng., 31 (5) (1999), pp. 371-380.
dcterms.references[8] G. S. Spagnolo and D. Ambrosini, “Diffractive optical element based sensorfor roughness measurement”, Sensors and Actuators A: Physical, 100 (2-3) (2002), pp. 180-186.
dcterms.references[9] J. Burke, T. Bothe, W. Osten and C. Hess, “Reverse engineering by fringe projection”, Proc. SPIE 4778 (2002), pp. 312-324.
dcterms.references[10] D. Ambrosini and D. Paoletti, “Heat transfer measurement by a diffractive optical element fringe projection”, Opt. Eng., 46 (9) (2007), 093606.
dcterms.references[11] C. Quan, C. J. Tay, H. M. Shang and P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis”, Opt. Commun., 118, (1995), pp. 479-483.
dcterms.references[12] U. Paul Kumar et al., “Single frame digital fringe projection profilometry for 3D sur face shape measurement”, Optik - Int. J. Light Electron Opt. (2012), doi: 10.1016/j.ijleo.2011.11.030.
dcterms.references[13] C. Quan, X. Y. He, C. F. Wang, C. J. Tay and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting”, Opt. Commun., 189, (2001), pp. 21-29.
dcterms.references[14] M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3D object shapes”, Appl. Opt., 22 (24), (1983), pp. 3977-3982.
dcterms.references[15] X. Chen, J. Chi, Y. Jin and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection”, Opt. Laser Eng., 2009; 47(3-4): 310-319.

Files in this item


This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record