• Index page
  • Información de interés
  • Login
  • Communities & Collections
  • Language
    Englishespañolportuguês (Brasil)
View Item 
  •   Redicuc Home
  • Producción científica y académica
  • Revistas Científicas
  • View Item
  •   Redicuc Home
  • Producción científica y académica
  • Revistas Científicas
  • View Item
Universidad de la Costa, CUC. Calle 58 # 55 - 66. Barranquilla, Colombia. 336 22 00. repositorioredicuc@cuc.edu.co. Corporación Universidad de la Costa.

Modelo de detección de intrusiones en sistemas de red, realizando selección de características con FDR y entrenamiento y clasificación con SOM

Intrusion detection model in network systems, making feature selection with fdr and classification-training stages with s


Thumbnail
View/Open
Modelo de detección de intrusiones en sistemas de red, realizando selección de características con FDR y entrenamiento y clasificación con SOM (2.026Mb)
Date
2012-10-31
Author
De la Hoz, Emiro
De la Hoz Correa, Eduardo Miguel
Ortiz, Andrés
Ortega, Julio
Metadata
Show full item record
BASE GoogleScholar
Compartir:


Impacto

URI: http://hdl.handle.net/11323/2659

Abstract

Los Sistemas de Detección de Intrusos (IDS, por sus siglas en inglés) comerciales actuales clasifican el tráfico de red, detectando conexiones normales e intrusiones, mediante la aplicación de métodos basados en firmas; ello conlleva problemas pues solo se detectan intrusiones previamente conocidas y existe desactualización periódica de la base de datos de firmas. En este artículo se evalúa la eficiencia de un modelo de detección de intrusiones de red propuesto, utilizando métricas de sensibilidad y especificidad, mediante un proceso de simulación que emplea el dataset NSL-KDD DARPA, seleccionando de éste las características más relevantes con FDR y entrenando una red neuronal que haga uso de un algoritmo de aprendizaje no supervisado basado en mapas auto-organizativos, con el propósito de clasificar el tráfico de la red en conexiones normales y ataques, de forma automática. La simulación generó métricas de sensibilidad del 99,69% y de especificidad del 56,15% utilizando 20 y 15 características, respectivamente
 
Current commercial IDSs classify network traffic, detecting both intrusions and normal con-nections by applying signature-based methods. This leads to problems since only intrusion detection previously known is detected and signature database is periodically outdated. This paper evaluates the efficiency of a proposed network intrusion detection model, using sen-sitivity and specificity metrics through a simulation process that uses the dataset NSL-KDD DARPA, selecting from this, the most relevant features with FDR and training a neural net-work that makes use of an unsupervised learning algorithm based on SOMs, in order to au-tomatically classify network’s traffic into normal and attack connections. Metrics generated by simulation were: sensitivity 99.69% and specificity 56.15%, using 20 and 15 features respectively
 
Para citar este documento con norma APA sexta edición utilice:
De la Hoz Franco, E., De la Hoz Correa, E. M., Ortiz, A., & Ortega, J. (2012). Modelo de detección de intrusiones en sistemas de red, realizando selección de características con FDR y entrenamiento y clasificación con SOM. INGE CUC, 8(1), 85-116. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/225

Collections
  • Revistas Científicas

Browse

All of RedicucCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Compartir en

Universidad de la Costa, CUC

  • Calle 58 # 55 - 66. Barranquilla, Colombia

  • 336 22 00

  • repositorioredicuc@cuc.edu.co

Corporación Universidad de la Costa CUC, Personería Jurídica con Resolución No. 352 del 23 de abril de 1971 y reconocida como Universidad mediante resolución 3235 del 28 de marzo de 2012 expedida por el MEN. Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

Enlaces institucionales:

  • Universidad de la Costa
  • Biblioteca
  • Catálogo bibliográfico
  • Recuperador Primo

Universidad de la Costa CUC.
Politica de Protección de Datos.