Show simple item record

dc.creatorIglesias Gamarra, José Ramón
dc.identifier.citationIglesias Gamarra, J. (2010). Robótica: la cinemática vista desde la teoría matemática en robots bípedos. INGE CUC, 6(1), 143-156. Recuperado a partir de
dc.identifier.issn0122-6517, 2382-4700 electrónico
dc.description.abstractEste trabajo aborda la investigación en robótica utilizando técnicas de Geometría Diferencial, basadas en la teoría matemática de Grupos y Álgebras de Lie y Algoritmos de Denavit-Hatenberg y herramientas de Geometría Computacional para el análisis de interfaces en evolución. Esta investigación con robots tiene como una de sus fases dentro de sus objetivos la resolución completa del problema de Locomoción y Navegación Bípeda de Robots Humanoides. Para ello, utilizamos nuevos modelos y algoritmos geométricos de propósito general, no presentados anteriormente en la literatura. El nuevo algoritmo “Un Paso Adelante” (UPA), resuelve la locomoción bípeda de un humanoide, basándose en el nuevo modelo “División Cinemática Sagital” (DCS). El nuevo algoritmo “Método Modificado de Marcha Rápida” (M3R) proporciona trayectorias libres de colisiones para resolver problemas de planificación, sea cual fuere la estructura del entorno de trabajo. Para la navegación del robot humanoide, introducimos el nuevo modelo “Trayectoria Corporal Global” (TCG). Los nuevos modelos y algoritmos introducidos en esta investigación, se están probando en experimentos reales con el humanoide que estamos trabajando en la Universidad del
dc.description.abstractThis work explores the research on robotics using some Differential Geometrytechniques based on the mathematical theory of Lie Groups and Algebras, and some Computational Geometry tools from the analy-sis of evolving interfaces.This research with robots has as one of its phases within its objectives the full resolution of the problem of locomotion and navigation Bipeda of humanoid ro-bots. To do this, we used new models and geomet-ric algorithms, general-purpose, not previously sub-mitted in the literature. The new “One Step Goal” algorithm (OSG),resolves the bipedal locomotion based upon the new humanoid model called “Sagittal Kinematics Division” (SKD). The new algorithm “Fast Marching Method Modified” (FM3)delivers collision-free trajectories to solve the path planning problems, whatever the structure of the working environment. For the humanoid robot navigation problem, the new model “Whole Body Trajectory” (WBT)is introduced. The new models and algorithms introduced by this research have been successfully tested through real experiments with the humanoid in the University of Magdalena.eng
dc.publisherCorporación Universidad de la Costaspa
dc.sourceINGE CUCspa
dc.subjectRobots humanoidesspa
dc.subjectProductos de exponencialesspa
dc.titleRobótica la cinemática vista desde la teoría matemática en robots bípedosspa
dcterms.referencesArbulú, M.; Prieto, F.; Cabas, L. M.; Staroverov, P.; Kaynov, D.; Balaguer, C. (2005, septiembre). ZMP Human Measure System. In 8tn International Conference on Climbing and Walking Robots (Clawar’2005). London. United
dcterms.referencesChestnutt, J.; Kuffner, J.; Nishiwaki, K. and Kagami, S. (2003). Planning Biped Navigation Strategies in Complex Environments. In IEEE International Conf. on Humanoid Robotics.
dcterms.referencesDavison, A. J.; González, Y. and Kita, N. (2004). Real-Time 3D SLAM with Wide-Angle Vision. In Proc. IFAC Symposium on Intelligent Autonomous Vehicles.
dcterms.referencesDavison, A. J. (2003). Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the Ninth International Conference on Computer Vision (ICCV’03), pp. 1403-1410, Nice, France.
dcterms.referencesDenavit, J. and Hartenberg , R. S. (1955). A kinematic notation for lower-pair mechanisms base don matrices. Journal of Applied Mechanics, pp. 215-221.
dcterms.referencesGeroimenko, V. and Chen, C. (2004). Visualizing Information Using SVG and X3D. Springer.
dcterms.referencesGoswami, A. (1999, june). Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. The International Journal of Robotics Research, Vol. 18, No. 6, pp. 523-533.
dcterms.referencesGreen, M. and Limebeer, D. J. N. (1995). Linear Robust Control. Prentice-Hall, Englewood Cli s, NJ.
dcterms.referencesGupta, K. C. (1986). Kinematic analysis of manipulators using the zero reference position description. Int. J. Robotics Research. Vol. 5.
dcterms.referencesHardt, M.; Kreutz-Delgado, K.; and William Helton, J. (1998). Minimal Energy Control of a Biped Robot with Numerical Methods and a Recursive Symbolic Dynamic Model. In Proc. 37th IEEE Conference on Decision and Control, pp. 413-6.
dcterms.referencesHayati, S. (1986). Hybrid position force control of multi-arm cooperating robots. In Proc. IEEE Int. Conf. Robotics and Automation. San Francisco, CA: IEEE, pp. 82-89.
dcterms.referencesHirai, K.; Hirose, M.; Haikawa, Y. and Takenaka (1998). The Development of Honda Humanoid Robot. In IEEE Conference on Robotics and Automation. v2, pp. 1321-1326.
dcterms.referencesHsu, D.; Kavraki, L.; Latombe , J.; Motwani, R. and Sorkin, S. (1998). On finding narrow passages with probabilistic roadmap planners. Algorithmic Foundation of Robotics, A K Peters Ltd, pp. 141-153.
dcterms.referencesHwang, Y. K. and Ahuja, N. (1992). Gross motion planning - a survey. ACM Comput. Surv., 24(3):219-291.
dcterms.referencesJain, A. and Rodríguez, G. (1995). Diagonalized Lagrangian Robot Dynamics. IEEE Transactions on Robotics and Automation, Vol. 11, No. 4, pp. 571-584.
dcterms.referencesJain, A.; Rodríguez, G. and Kreutz-Delgado, K. (1990). Multi-arm grasp and manipulation of objects with internal degrees of freedom. In Proc. 29th IEEE Conf. on Decision and Control, pp. 3110-11.
dcterms.referencesKahan, W. (1983). Lectures on computational aspects of geometry. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. Unpublished.
dcterms.referencesKajita, S. and Tani, K. (1996). Experimental Study of Biped Dynamic Walking. IEEE Control Systems, pp. 13-19.
dcterms.referencesKanehiro, F.; Fujiwara, K. et al. (2002, Mayo). Open Architecture Humanoid Robotics Platform. In Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, DC.
dcterms.referencesKanehiro, F.; Yoshimi, T.; Kajita, S.; Morisawa, M. et al. (2005, april). Whole Body Locomotion Planning of Humanoid Robots based on a 3D Grid Map. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
dcterms.referencesKaneko, K.; Kajita, S.; Kanehiro, F.; Yokoi, K.; Fujiwara, K.; Hirukawa, H.; Kawasaki, T.; Hirata, M. and Isozumi, T. (2002, may). Design of Advanced Leg Module for Humanoid Robotics Project of METI. In Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC.
dcterms.referencesKonno, A. (2002, may). Design and Development of the Biped Prototype Robian. In Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Wasington, DC.
dcterms.referencesKuffner, J. J.; Nishiwaki, K.; Kagami, S.; Inaba, M. and Inoue, H. Motion Planning for Humanoid Robots. In Proc. 11th Int’l Symp. Of Robotics Research (ISRR 2003). Matlab 2009. The MathWorks, Inc., 2010.
dcterms.referencesNakanishi, J.; Morimoto, J.; Endoa, G.; Cheng, G. et al. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, Elsevier.
dcterms.referencesNakaoka, S.; Nakazawa, A.; Kanehiro, F.; Kaneko, K. (2004). Task Model of Lower Body Motion for a Biped Humanoid Robot to Imitate Human Dances. In IEEE/RSJ International Conference on Intelligent Robots and Systems.
dcterms.referencesPark, Va F. C.; Bobrow, J. E. and Ploen, S. R. (1995). A Lie Group Formulation of Robot Dynamics. The International Journal of Robotics Research, Vol. 14, No. 6, pp. 609-618.

Files in this item


This item appears in the following Collection(s)

  • Revistas Científicas
    Artículos de investigación publicados en revistas pertenecientes a la Editorial EDUCOSTA.

Show simple item record