Mostrar el registro sencillo del ítem

dc.contributor.authorMorillas, Héctorspa
dc.contributor.authorUpasen, Settakornspa
dc.contributor.authorMaguregui, Maitespa
dc.contributor.authorMarcaida, Ikerspa
dc.contributor.authorGallego‐Cartagena, Eulerspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorF.O. Silva, Luisspa
dc.date.accessioned2019-03-19T20:57:56Z
dc.date.available2019-03-19T20:57:56Z
dc.date.issued2018-10-26
dc.identifier.urihttp://hdl.handle.net/11323/2958spa
dc.description.abstractSalt crystallization is one of the major problems currently faced by the field of architecture and construction. Its effects are devastating to the extent that they may even lead to loss of material. Although many innovative and resistant materials have been developed in the last years, in most of the constructions, salt crystallization is a persistent problem. Salts crystallizations are formed by the dissolution and subsequent precipitation of the soluble salts present in the material itself or due to the formation of new ones because of the reaction between original components of the building materials with salts coming from infiltration waters or with acid aerosols present in the atmosphere. Among others, some of the most common salts that can crystallize in the building materials are nitrates and sulfates. Both of them are soluble compounds, which can mobilize throughout the material easily, reprecipitate, and generate volume changes responsible for fissures, fractures, and even the loss of building material. In this work, a specific study of salts crystallizations in a recent construction erected in 2013 in Amorebieta (Basque Country, North of Spain) using a different kind of materials has been studied. The materials affected by salts are joint mortars, which in a first step were characterized by X‐ray diffraction and Raman microscopy to determine the mineralogical composition. In a second step, a soluble salts tests by ion chromatography was applied to approach quantitatively the impact of the salts. Finally, in a third step, the reactions that give rise to the decay products (thenardite, nitrocalcite, and/or epsomite mainly) were proposed and confirmed through a thermodynamic modellingspa
dc.language.isoeng
dc.publisherUniversidad de la Costaspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectmortarsspa
dc.subjectnitrocalcitespa
dc.subjectsoluble saltsspa
dc.subjectthenarditespa
dc.subjecttronaspa
dc.titleEvaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical studyspa
dc.typePre-Publicaciónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] S. Chatterji, J. Cryst. Growth 2005, 277, 566. [2] M. Schiro, E. Ruiz‐Agudo, C. Rodriguez‐Navarro, Phys. Rev. Lett. 2012, 109, 265503/1. [3] L. A. Rijniers, H. P. Huinink, L. Pel, K. Kopinga, Phys. Rev. Lett. 2005, 94, 075503/1. [4] W. Ou, W. Lu, K. Qu, L. Geng, I.‐M. Chou, Int. J. Heat Mass Transfer 2016, 101, 834. [5] R. M. Espinosa‐Marzal, G. W. Scherer, Environ. Earth Sci. 2008, 56, 605. [6] S. Ordoñez, A. La Iglesia, M. Louis, A. Garcia‐del‐Cura, Construct. Build Mater. 2016, 112, 343. [7] J. Desarnaud, D. Bonn, N. Shahidzadeh, Sci. Rep. 2016, 6, 30856. [8] H. Morillas, M. Maguregui, C. Paris, L. Bellot‐Gurlet, P. Colomban, J. M. Madariaga, Microchem. J. 2015, 123, 148. [9] O. Gómez‐Laserna, M. A. Olazabal, H. Morillas, N. Prieto‐ Taboada, I. Martinez‐Arkarazo, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1277. [10] O. Gómez‐Laserna, N. Prieto‐Taboada, H. Morillas, I. Arrizabalaga, M. A. Olazabal, G. Arana, J. M. Madariaga, Anal. Methods 2015, 7, 4608. [11] M. Maguregui, A. Sarmiento, R. Escribano, I. Martinez‐ Arkarazo, K. Castro, J. M. Madariaga, Anal. Bioanal. Chem. 2009, 395, 2119. [12] W. De Boever, T. Bultreys, H. Derluyn, L. Van Hoorebeke, V. Cnudde, Sci. Total Environ. 2016, 554–555, 102. [13] V. Matovic, S. Eric, D. Sreckovic‐Batocanin, P. Colomban, A. Kremenovic, Environ. Earth Sci. 2014, 72, 1939. [14] T. Aguayo, E. Clavijo, F. Eisner, C. Ossa‐Izquierdo, M. M. Campos‐Vallette, J. Raman Spectrosc. 2011, 42, 2143. [15] C. Cultrone, E. Sebastian, Environ. Geol. 2008, 56, 729. [16] A. Broggi, E. Petrucci, M. P. Bracciale, M. L. Santarelli, J. Raman Spectrosc. 2012, 43, 1560. [17] R. Giustetto, E. M. Moschella, M. Cristellotti, E. Costa, Stud. Conserv. 2017, 62, 474. [18] M. Steiger, J. Cryst. Growth 2005, 282, 455. [19] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2012, 43, 1630. [20] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1700. [21] A. Hamilton, R. I. Menzies, J. Raman Spectrosc. 2010, 41, 1014. [22] H. Morillas, M. Maguregui, J. Trebolazabala, J. M. Madariaga, Spectrochim. Acta A 2015, 136, 1195. [23] M. Maguregui, A. Sarmiento, I. Martinez‐Arkarazo, M. Angulo, K. Castro, G. Arana, N. Etxebarria, J. M. Madariaga, Anal. Bioanal. Chem. 2008, 391, 1361. [24] S. Gibeaux, C. Thomachot‐Schneider, S. Eyssautier‐Chuine, B. Marin, P. Vazquez, Environ. Earth Sci. 2018, 77, 327. [25] L. Pereira‐Pardo, B. Prieto, B. Silva, Int. J. Conserv. Sci. 2017, 8, 351. [26] C. Nunes, O. Skružná, J. Válek, J. Cult. Herit. 2018, 30, 57. [27] S. Mancigotti, A. Hamilton, in WIT Transactions on The Built Environment, (Eds: V. Echarri, C. A. Brebbia), WIT Press, Southampton, UK 2017 207. [28] T. A. Saidov, L. Pel, K. Kopinga, Mater. Struct. 2017, 50, 145. [29] H. Morillas, M. Maguregui, C. García‐Florentino, I. Marcaida, J. M. Madariaga, Sci. Total Environ. 2016, 550, 285. [30] H. Morillas, I. Marcaida, M. Maguregui, J. A. Carrero, J. M. Madariaga, Sci. Total Environ. 2016, 542, 716. [31] H. Morillas, I. Marcaida, C. García‐Florentino, M. Maguregui, G. Arana, J. M. Madariaga, Sci. Total Environ. 2018, 615, 691. [32] J. M. Sanchez‐Perez, I. Antiguedad, I. Arrate, C. Garcıa‐ Linares, I. Morell, Sci. Total Environ. 2003, 317, 173. [33] L. F. Du, T. Zhao, C. Zhang, Z. An, Q. Wu, B. Liu, P. Li, M. Ma, Agric. Sci. China 2011, 10, 423. [34] V. Matovic, S. Eric, A. Kremenovic, P. Colomban, D. Sreckovic‐ Batocanin, N. Matovic, J. Cult. Heritage 2012, 13, 175. [35] N. Prieto‐Taboada, S. Fdez‐Ortiz De Vallejuelo, M. Veneranda, I. Marcaida, H. Morillas, M. Maguregui, K. Castro, E. De Carolis, M. Osanna, J. M. Madariaga, Sci. Rep‐UK 2018, 8, 1613. [36] P. López‐Arce, A. Zornoza‐Indart, C. Vázquez‐Calvo, M. Gomez‐Heras, M. Alvarez de Buergo, R. Fort, Spectrosc. Lett. 2011, 44, 505. [37] S. Kramar, M. Urosevic, H. Pristacz, B. Mirtič, J. Raman Spectrosc. 2010, 41, 1441. [38] M. Maguregui, N. Prieto‐Taboada, J. Trebolazabala, N. Goienaga, N. Arrieta, J. Aramendia, L. Gomez‐Nubla, A. Sarmiento, M. Olivares, J. A. Carrero, I. Martinez‐Arkarazo, K. Castro, G. Arana, M. A. Olazabal, L. A. Fernandez, J. M. Madariaga, CHEMCH 1st International Congress Chemistry for Cultural Heritage, Ravenna 2010. [39] R. T. Downs, M. Hall‐Wallace, 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland. Programme With Abstracts, 2002, 128. [40] http://wwcvw.iupac.org/index.php?id=410 [last accessed, July 2018]. [41] http://www.lwr.kth.se/English/OurSoftware/vminteq/ (last accessed, July 2018). [42] M. Maguregui, K. Castro, H. Morillas, J. Trebolazabala, U. Knuutinen, R. Wiesinger, M. Schreiner, J. M. Madariaga, Anal. Methods 2014, 6, 372. [43] H. Morillas, M. Maguregui, J. Bastante, G. Huallparimachi, I. Marcaida, C. García‐Florentino, F. Astete, J. M. Madariaga, Microchem. J. 2018, 137, 422. [44] H. Morillas, M. Maguregui, I. Marcaida, J. Trebolazabala, I. Salcedo, J. M. Madariaga, Microchem. J. 2015, 121, 48. [45] M. Steiger, S. Asmussen, Geochim. Cosmochim. Acta 2008, 72, 4291. [46] C. Rodriguez‐Navarro, E. Doehne, E. Sebastian, Cem. Concr. Res. 2000, 30, 1527. [47] M. J. A. Mijarsh, M. A. Megat‐Johari, Z. A. Ahmad, Cem. Concr. Compos. 2015, 60, 65. [48] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L. F. O. Silva, Construct. Build Mater. 2018, 178, 384. [49] S. Medina‐Carrasco, J. M. Valverde, Cryst. Growth Des. 2018. Ahead of Print [50] A. E. Charola, J. Pühringer, M. Steiger, Environ. Geol. 2007, 57, 339. [51] H. Morillas, M. Maguregui, G. Huallparimachi, I. Marcaida, C. García‐Florentino, L. Lumbreras, F. Astete, J. M. Madariaga, Microchem. J. 2018, 139, 42. [52] H. Morillas, J. García‐Galan, M. Maguregui, C. García‐ Florentino, I. Marcaida, J. A. Carrero, J. M. Madariaga, Microchem. J. 2016, 128, 288. [53] H. Siedel, Environ. Earth Sci. 2013, 69, 1249. [54] C. García‐Florentino, M. Maguregui, H. Morillas, U. Balziskueta, A. Azcarate, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2016, 47, 1458.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem