dcterms.references | Andersen, T., & Fogh, J. (2001). Weight loss and delayed gastric emptying following a South American herbal preparation in overweight patients. Journal of Human Nutrition and Dietetics, 14(3), 243–250. https://doi.org/10.1046/j.1365‐277X.2001.00290.x
Ângelo, P. C. S., Nunes‐Silva, C. G., Brígido, M. M., Azevedo, J. S. N., Assunção, E. N., Sousa, A. R. B., … Astolfi‐Filho, S. (2008). Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: The seeded‐fruit transcriptome. Plant Cell Reports, 27(1), 117–124. https://doi.org/10.1007/s00299‐007‐0456‐y
Arslanian, S., Kim, J. Y., Nasr, A., Bacha, F., Tfayli, H., Lee, S., & Toledo, F. G. S. (2017). Insulin sensitivity across the lifespan from obese adolescents to obese adults with impaired glucose tolerance: Who is worse off? Pediatric Diabetes, 19(2), 205–211. https://doi.org/10.1111/pedi.12562
Bittencourt, L. d. S., Zeidán‐Chuliá, F., Yatsu, F. K. J., Schnorr, C. E.,
Moresco, K. S., Kolling, E. A., … Moreira, J. C. F. (2014). Guarana
(Paullinia cupana Mart.) prevents β‐amyloid aggregation, generation
of advanced glycation‐end products (AGEs), and acrolein‐induced cytotoxicity on human neuronal‐like cells. Phytotherapy Research, 28(11), 1615–1624. https://doi.org/10.1002/ptr.5173
Blanck, H. M., Serdula, M. K., Gillespie, C., Galuska, D. A., Sharpe, P. A., Conway, J. M., … Ainsworth, B. E. (2007). Use of nonprescription dietary supplements for weight loss is common among Americans.
Journal of the American Dietetic Association, 107(3), 441–447. https://
doi.org/10.1016/j.jada.2006.12.009
Boozer, C. N., Nasser, J. a., Heymsfield, S. B., Wang, V., Chen, G., &
Solomon, J. L. (2001). An herbal supplement containing Ma Huang‐
Guarana for weight loss: A randomized, double‐blind trial. International Journal of Obesity, 25(3), 316–324. https://doi.org/10.1038/sj.ijo.0801539
Bortolin, R. C., Vargas, A. R., Gasparotto, J., Chaves, P. R., Schnorr, C. E., Martinello, K. B., … Moreira, J. C. F. (2018). A new animal diet based on human Western diet is a robust diet‐induced obesity model: Comparison to high‐fat and cafeteria diets in term of metabolic and gut microbiota disruption. International Journal of Obesity, 42(3), 525–534. https://doi.org/10.1038/ijo.2017.225
Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K., & Dumas, M.‐E. (2016). Impact of the gut microbiota on inflammation, obesity, And Metabolic Disease. Genome Medicine, 8(1), 42. https://doi.org/
10.1186/s13073‐016‐0303‐2
Cantó, C., & Auwerx, J. (2011). Calorie restriction: Is AMPK a key sensor and effector? Physiology (Bethesda, Md.), 26(4), 214–224.
Chiu, C. M., Huang, W. C., Weng, S. L., Tseng, H. C., Liang, C., Wang, W. C., … Huang, H. D. (2014). Systematic analysis of the association between gut flora and obesity through high‐throughput sequencing and bioinformatics approaches. BioMed Research International, 2014, 1–11.
Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., … Frevert, E. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 3(6), 403–416. https://doi.org/ 10.1016/j.cmet.2006.05.005
Costa Krewer, C., Ribeiro, E. E., Ribeiro, E. A. M., Moresco, R. N., Ugalde Marques da Rocha, M. I., Santos Montagner, G. F. F., … da Cruz, I. B. (2011). Habitual intake of guaraná and metabolic morbidities: An epidemiological study of an elderly Amazonian population. Phytotherapy Research, 25(9), 1367–1374.
Grahame Hardie, D. (2016). Regulation of AMP‐activated protein kinase by natural and synthetic activators. Acta Pharmaceutica Sinica B, 6(1), 1–19. https://doi.org/10.1016/j.apsb.2015.06.002
Henning, S. M., Yang, J., Hsu, M., Lee, R.‐P., Grojean, E. M., Ly, A., … Li, Z. (2017). Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet‐induced obese mice. European Journal of Nutrition, 57(8), 1–11.
Kotzampassi, K., Giamarellos‐Bourboulis, E. J., & Stavrou, G. (2014).
Obesity as a consequence of gut bacteria and diet interactions. ISRN
Obesity, 2014, 1–8. https://doi.org/10.1155/2014/651895
Lidell, M. E., Betz, M. J., & Enerbäck, S. (2014). Brown adipose tissue and its therapeutic potential. Journal of Internal Medicine, 276(4), 364–377. https://doi.org/10.1111/joim.12255
Maffetone, P. B., Rivera‐Dominguez, I., & Laursen, P. B. (2017). Overfat adults and children in developed countries: The public health importance of identifying excess body fat. Frontiers in Public Health, 5(July), 1–11.
Martel, J., Ojcius, D. M., Chang, C.‐J., Lin, C.‐S., Lu, C.‐C., Ko, Y.‐F., …Young, J. D. (2016). Anti‐obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13(3), 149–160. https://doi.org/10.1038/nrendo.2016.142
Martyn, J. A. J., Kaneki, M., & Yasuhara, S. (2008). Obesity‐induced insulin resistance and hyperglycemia. Anesthesiology, 109(1), 137–148. https://doi.org/10.1097/ALN.0b013e3181799d45
National Research Council (2011). Guide for the care and use of laboratory animals. National Institutes of Health (8th ed., Vol. 46). US: The National Academies Press. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21595115
Pittler, M. H., Schmidt, K., & Ernst, E. (2005). Adverse events of herbal food supplements for body weight reduction: Systematic review.
Obesity Reviews, 6(2), 93–111. https://doi.org/10.1111/j.1467‐
789X.2005.00169.x
Poekes, L., Lanthier, N., & Leclercq, I. A. (2015). Brown adipose tissue: A potential target in the fight against obesity and the metabolic syndrome. Clinical Science, 129, 933–949. https://doi.org/10.1042/
CS20150339
Restani, P., Di Lorenzo, C., Garcia‐Alvarez, A., Badea, M., Ceschi, A., Egan, B., … Serra‐Majem, L. (2016). Adverse effects of plant food supplements self‐reported by consumers in the PlantLIBRA survey involving six european countries. PLoS ONE, 11(2), 1–20.
Saito, M., & Yoneshiro, T. (2013). Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current Opinion in Lipidology, 24(1), 71–77. https://doi.org/10.1097/ MOL.0b013e32835a4f40
Sanchez‐Delgado, G., Martinez‐Tellez, B., Olza, J., Aguilera, C. M., Gil, Á., & Ruiz, J. R. (2015). Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism, 67(1), 21–32. https://doi.org/10.1159/000437173
Sharma, V., & McNeill, J. H. (2009). To scale or not to scale: The principles of dose extrapolation. British Journal of Pharmacology, 157(6), 907–921. https://doi.org/10.1111/j.1476‐5381.2009.00267.x
Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56–64. https://doi.org/10.1038/nature18846
Wang, J.‐H., Bose, S., Kim, H.‐G., Han, K.‐S., & Kim, H. (2015). Fermented RHIZOMA ATRACTYLODIS Macrocephalae alleviates high fat diet‐induced obesity in association with regulation of intestinal permeability and microbiota in rats. Scientific Reports, 5, 8391. https://doi.org/10.1038/srep08391
Yoneshiro, T., Matsushita, M., Hibi, M., Tone, H., Takeshita, M., Yasunaga, K., … Saito, M. (2017). Tea catechin and caffeine activate brown adipose tissue and increase cold‐induced thermogenic capacity in humans. The American Journal of Clinical Nutrition, 105(4), 873–881. https://doi.org/10.3945/ajcn.116.144972
Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., … Jin, W. (2017). Rutin ameliorates obesity through brown fat activation. The FASEB Journal, 31(1), 333–345. https://doi.org/10.1096/fj.201600459RR | spa |