Show simple item record

dc.creatorCalixto Bortolin, Rafael
dc.creatorRodrigues Vargas, Amanda
dc.creatorde Miranda Ramos, Vitor
dc.creatorGasparotto, Juciano
dc.creatorRodrigues Chaves, Paloma
dc.creatorSchnorr, Carlos Eduardo
dc.creatorda Boit Martinello, Katia
dc.creatorKleber Silveira, Alexandre
dc.creatorMautone Gomes, Henrique
dc.creatorKelly Rabelo, Thallita
dc.creatorSartori Grunwald, Marcelo
dc.creatorLigabue‐Braun, Rodrigo
dc.creatorPens Gelain, Daniel
dc.creatorFonseca Moreira, José Claudio
dc.date.accessioned2019-04-03T22:01:45Z
dc.date.available2019-04-03T22:01:45Z
dc.date.issued2019-02-09
dc.identifier.urihttp://hdl.handle.net/11323/2992
dc.description.abstractObesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low‐fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein‐1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation‐ induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.spa
dc.language.isoengspa
dc.publisherUniversidad de la Costaspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectdiet‐induced obesityspa
dc.subjectguaranaspa
dc.subjectmicrobiotaspa
dc.subjectmolecular dockingspa
dc.subjectweight lossspa
dc.titleGuarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activationspa
dc.typePreprintspa
dcterms.referencesAndersen, T., & Fogh, J. (2001). Weight loss and delayed gastric emptying following a South American herbal preparation in overweight patients. Journal of Human Nutrition and Dietetics, 14(3), 243–250. https://doi.org/10.1046/j.1365‐277X.2001.00290.x Ângelo, P. C. S., Nunes‐Silva, C. G., Brígido, M. M., Azevedo, J. S. N., Assunção, E. N., Sousa, A. R. B., … Astolfi‐Filho, S. (2008). Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: The seeded‐fruit transcriptome. Plant Cell Reports, 27(1), 117–124. https://doi.org/10.1007/s00299‐007‐0456‐y Arslanian, S., Kim, J. Y., Nasr, A., Bacha, F., Tfayli, H., Lee, S., & Toledo, F. G. S. (2017). Insulin sensitivity across the lifespan from obese adolescents to obese adults with impaired glucose tolerance: Who is worse off? Pediatric Diabetes, 19(2), 205–211. https://doi.org/10.1111/pedi.12562 Bittencourt, L. d. S., Zeidán‐Chuliá, F., Yatsu, F. K. J., Schnorr, C. E., Moresco, K. S., Kolling, E. A., … Moreira, J. C. F. (2014). Guarana (Paullinia cupana Mart.) prevents β‐amyloid aggregation, generation of advanced glycation‐end products (AGEs), and acrolein‐induced cytotoxicity on human neuronal‐like cells. Phytotherapy Research, 28(11), 1615–1624. https://doi.org/10.1002/ptr.5173 Blanck, H. M., Serdula, M. K., Gillespie, C., Galuska, D. A., Sharpe, P. A., Conway, J. M., … Ainsworth, B. E. (2007). Use of nonprescription dietary supplements for weight loss is common among Americans. Journal of the American Dietetic Association, 107(3), 441–447. https:// doi.org/10.1016/j.jada.2006.12.009 Boozer, C. N., Nasser, J. a., Heymsfield, S. B., Wang, V., Chen, G., & Solomon, J. L. (2001). An herbal supplement containing Ma Huang‐ Guarana for weight loss: A randomized, double‐blind trial. International Journal of Obesity, 25(3), 316–324. https://doi.org/10.1038/sj.ijo.0801539 Bortolin, R. C., Vargas, A. R., Gasparotto, J., Chaves, P. R., Schnorr, C. E., Martinello, K. B., … Moreira, J. C. F. (2018). A new animal diet based on human Western diet is a robust diet‐induced obesity model: Comparison to high‐fat and cafeteria diets in term of metabolic and gut microbiota disruption. International Journal of Obesity, 42(3), 525–534. https://doi.org/10.1038/ijo.2017.225 Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K., & Dumas, M.‐E. (2016). Impact of the gut microbiota on inflammation, obesity, And Metabolic Disease. Genome Medicine, 8(1), 42. https://doi.org/ 10.1186/s13073‐016‐0303‐2 Cantó, C., & Auwerx, J. (2011). Calorie restriction: Is AMPK a key sensor and effector? Physiology (Bethesda, Md.), 26(4), 214–224. Chiu, C. M., Huang, W. C., Weng, S. L., Tseng, H. C., Liang, C., Wang, W. C., … Huang, H. D. (2014). Systematic analysis of the association between gut flora and obesity through high‐throughput sequencing and bioinformatics approaches. BioMed Research International, 2014, 1–11. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., … Frevert, E. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 3(6), 403–416. https://doi.org/ 10.1016/j.cmet.2006.05.005 Costa Krewer, C., Ribeiro, E. E., Ribeiro, E. A. M., Moresco, R. N., Ugalde Marques da Rocha, M. I., Santos Montagner, G. F. F., … da Cruz, I. B. (2011). Habitual intake of guaraná and metabolic morbidities: An epidemiological study of an elderly Amazonian population. Phytotherapy Research, 25(9), 1367–1374. Grahame Hardie, D. (2016). Regulation of AMP‐activated protein kinase by natural and synthetic activators. Acta Pharmaceutica Sinica B, 6(1), 1–19. https://doi.org/10.1016/j.apsb.2015.06.002 Henning, S. M., Yang, J., Hsu, M., Lee, R.‐P., Grojean, E. M., Ly, A., … Li, Z. (2017). Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet‐induced obese mice. European Journal of Nutrition, 57(8), 1–11. Kotzampassi, K., Giamarellos‐Bourboulis, E. J., & Stavrou, G. (2014). Obesity as a consequence of gut bacteria and diet interactions. ISRN Obesity, 2014, 1–8. https://doi.org/10.1155/2014/651895 Lidell, M. E., Betz, M. J., & Enerbäck, S. (2014). Brown adipose tissue and its therapeutic potential. Journal of Internal Medicine, 276(4), 364–377. https://doi.org/10.1111/joim.12255 Maffetone, P. B., Rivera‐Dominguez, I., & Laursen, P. B. (2017). Overfat adults and children in developed countries: The public health importance of identifying excess body fat. Frontiers in Public Health, 5(July), 1–11. Martel, J., Ojcius, D. M., Chang, C.‐J., Lin, C.‐S., Lu, C.‐C., Ko, Y.‐F., …Young, J. D. (2016). Anti‐obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13(3), 149–160. https://doi.org/10.1038/nrendo.2016.142 Martyn, J. A. J., Kaneki, M., & Yasuhara, S. (2008). Obesity‐induced insulin resistance and hyperglycemia. Anesthesiology, 109(1), 137–148. https://doi.org/10.1097/ALN.0b013e3181799d45 National Research Council (2011). Guide for the care and use of laboratory animals. National Institutes of Health (8th ed., Vol. 46). US: The National Academies Press. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21595115 Pittler, M. H., Schmidt, K., & Ernst, E. (2005). Adverse events of herbal food supplements for body weight reduction: Systematic review. Obesity Reviews, 6(2), 93–111. https://doi.org/10.1111/j.1467‐ 789X.2005.00169.x Poekes, L., Lanthier, N., & Leclercq, I. A. (2015). Brown adipose tissue: A potential target in the fight against obesity and the metabolic syndrome. Clinical Science, 129, 933–949. https://doi.org/10.1042/ CS20150339 Restani, P., Di Lorenzo, C., Garcia‐Alvarez, A., Badea, M., Ceschi, A., Egan, B., … Serra‐Majem, L. (2016). Adverse effects of plant food supplements self‐reported by consumers in the PlantLIBRA survey involving six european countries. PLoS ONE, 11(2), 1–20. Saito, M., & Yoneshiro, T. (2013). Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current Opinion in Lipidology, 24(1), 71–77. https://doi.org/10.1097/ MOL.0b013e32835a4f40 Sanchez‐Delgado, G., Martinez‐Tellez, B., Olza, J., Aguilera, C. M., Gil, Á., & Ruiz, J. R. (2015). Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism, 67(1), 21–32. https://doi.org/10.1159/000437173 Sharma, V., & McNeill, J. H. (2009). To scale or not to scale: The principles of dose extrapolation. British Journal of Pharmacology, 157(6), 907–921. https://doi.org/10.1111/j.1476‐5381.2009.00267.x Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56–64. https://doi.org/10.1038/nature18846 Wang, J.‐H., Bose, S., Kim, H.‐G., Han, K.‐S., & Kim, H. (2015). Fermented RHIZOMA ATRACTYLODIS Macrocephalae alleviates high fat diet‐induced obesity in association with regulation of intestinal permeability and microbiota in rats. Scientific Reports, 5, 8391. https://doi.org/10.1038/srep08391 Yoneshiro, T., Matsushita, M., Hibi, M., Tone, H., Takeshita, M., Yasunaga, K., … Saito, M. (2017). Tea catechin and caffeine activate brown adipose tissue and increase cold‐induced thermogenic capacity in humans. The American Journal of Clinical Nutrition, 105(4), 873–881. https://doi.org/10.3945/ajcn.116.144972 Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., … Jin, W. (2017). Rutin ameliorates obesity through brown fat activation. The FASEB Journal, 31(1), 333–345. https://doi.org/10.1096/fj.201600459RRspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record